1
0
mirror of https://github.com/ellmau/adf-obdd.git synced 2025-12-19 09:29:36 +01:00

Add considering variable-impact to counting based stable models

This commit is contained in:
Stefan Ellmauthaler 2022-03-28 10:54:39 +02:00
parent 39379d9e3d
commit 1f196e3cf3
Signed by: ellmau
GPG Key ID: C804A9C1B7AF8256
2 changed files with 64 additions and 17 deletions

View File

@ -388,20 +388,35 @@ impl Adf {
}
fn two_val_model_counts(&mut self, interpr: &[Term]) -> Vec<Vec<Term>> {
self.two_val_model_counts_logic(interpr, &vec![Term::UND; interpr.len()])
self.two_val_model_counts_logic(interpr, &vec![Term::UND; interpr.len()], 0)
}
fn two_val_model_counts_logic(&mut self, interpr: &[Term], must_be: &[Term]) -> Vec<Vec<Term>> {
log::trace!("two_val_model_counts({:?}) called ", interpr);
fn two_val_model_counts_logic(
&mut self,
interpr: &[Term],
will_be: &[Term],
depth: usize,
) -> Vec<Vec<Term>> {
log::trace!("two_val_model_counts({:?}) called", interpr);
log::debug!("two_val_model_recursion_depth: {}/{}", depth, interpr.len());
if let Some((idx, ac)) = interpr
.iter()
.enumerate()
.filter(|(idx, val)| !(val.is_truth_value() || must_be[*idx].is_truth_value()))
.min_by(|(_idx_a, val_a), (_idx_b, val_b)| {
self.bdd
.filter(|(idx, val)| !(val.is_truth_value() || will_be[*idx].is_truth_value()))
.min_by(|(idx_a, val_a), (idx_b, val_b)| {
match self
.bdd
.models(**val_a, true)
.minimum()
.cmp(&self.bdd.models(**val_b, true).minimum())
{
// if the minimal counts are equal, choose the maximal var_impact
std::cmp::Ordering::Equal => self
.bdd
.var_impact(Var(*idx_b), interpr)
.cmp(&self.bdd.var_impact(Var(*idx_a), interpr)),
value => value,
}
})
{
let mut result = Vec::new();
@ -412,6 +427,7 @@ impl Adf {
ac,
check_models
);
let _ = self // return value can be ignored, but must be catched
.bdd
.interpretations(*ac, check_models, Var(idx), &[], &[])
@ -421,7 +437,7 @@ impl Adf {
let res = negative
.iter()
.try_for_each(|var| {
if new_int[var.value()].is_true() || must_be[var.value()] == Term::TOP {
if new_int[var.value()].is_true() || will_be[var.value()] == Term::TOP {
return Err(());
}
new_int[var.value()] = Term::BOT;
@ -430,7 +446,7 @@ impl Adf {
.and(positive.iter().try_for_each(|var| {
if (new_int[var.value()].is_truth_value()
&& !new_int[var.value()].is_true())
|| must_be[var.value()] == Term::BOT
|| will_be[var.value()] == Term::BOT
{
return Err(());
}
@ -440,7 +456,13 @@ impl Adf {
if res.is_ok() {
new_int[idx] = if check_models { Term::TOP } else { Term::BOT };
let upd_int = self.update_interpretation(&new_int);
result.append(&mut self.two_val_model_counts_logic(&upd_int, must_be));
if self.check_consistency(&upd_int, will_be) {
result.append(&mut self.two_val_model_counts_logic(
&upd_int,
will_be,
depth + 1,
));
}
}
res
});
@ -452,14 +474,17 @@ impl Adf {
.collect::<Vec<Term>>();
let mut upd_int = self.update_interpretation(&new_int);
// TODO: should be "must be true/false" instead of setting it to TOP/BOT and will need sanity checks at every iteration
log::trace!("\nnew_int {new_int:?}\nupd_int {upd_int:?}");
if new_int[idx].no_inf_inconsistency(&upd_int[idx]) {
upd_int[idx] = if check_models { Term::BOT } else { Term::TOP };
if new_int[idx].no_inf_inconsistency(&upd_int[idx]) {
let mut must_be_new = must_be.to_vec();
let mut must_be_new = will_be.to_vec();
must_be_new[idx] = new_int[idx];
result.append(&mut self.two_val_model_counts_logic(&upd_int, &must_be_new));
result.append(&mut self.two_val_model_counts_logic(
&upd_int,
&must_be_new,
depth + 1,
));
}
}
result
@ -470,15 +495,17 @@ impl Adf {
.enumerate()
.map(|(idx, val)| {
if !val.is_truth_value() {
must_be[idx]
will_be[idx]
} else {
*val
}
})
.collect::<Vec<Term>>();
// TODO: Not copletely correct - should be a check if concluded is consistant with ac
if concluded == self.update_interpretation(&concluded) {
vec![concluded]
let ac = self.ac.clone();
let result = self.apply_interpretation(&ac, &concluded);
if self.check_consistency(&result, &concluded) {
vec![result]
} else {
vec![interpr.to_vec()]
}
@ -486,8 +513,11 @@ impl Adf {
}
fn update_interpretation(&mut self, interpretation: &[Term]) -> Vec<Term> {
interpretation
.iter()
self.apply_interpretation(interpretation, interpretation)
}
fn apply_interpretation(&mut self, ac: &[Term], interpretation: &[Term]) -> Vec<Term> {
ac.iter()
.map(|ac| {
interpretation
.iter()
@ -503,6 +533,13 @@ impl Adf {
.collect::<Vec<Term>>()
}
fn check_consistency(&mut self, interpretation: &[Term], will_be: &[Term]) -> bool {
interpretation
.iter()
.zip(will_be.iter())
.all(|(int, wb)| wb.no_inf_inconsistency(int))
}
/// Computes the complete models
/// Returns an Iterator which contains all complete models
pub fn complete<'a, 'c>(&'a mut self) -> impl Iterator<Item = Vec<Term>> + 'c

View File

@ -405,6 +405,16 @@ impl Bdd {
var_set
}
}
pub fn var_impact(&self, var: Var, termlist: &[Term]) -> usize {
termlist.iter().fold(0usize, |acc, val| {
if self.var_dependencies(*val).contains(&var) {
acc + 1
} else {
acc
}
})
}
}
#[cfg(test)]