mirror of
https://github.com/ellmau/adf-obdd.git
synced 2025-12-19 09:29:36 +01:00
Feature/issue 39 counting model improvements (#42)
* Add more efficient construction of 2-val models with counting * Increased patch-number of the version
This commit is contained in:
parent
02dc37cbbf
commit
7e66d89d03
4
Cargo.lock
generated
4
Cargo.lock
generated
@ -4,7 +4,7 @@ version = 3
|
||||
|
||||
[[package]]
|
||||
name = "adf_bdd"
|
||||
version = "0.2.2"
|
||||
version = "0.2.3"
|
||||
dependencies = [
|
||||
"biodivine-lib-bdd",
|
||||
"derivative",
|
||||
@ -21,7 +21,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "adf_bdd-solver"
|
||||
version = "0.2.1"
|
||||
version = "0.2.3"
|
||||
dependencies = [
|
||||
"adf_bdd",
|
||||
"assert_cmd",
|
||||
|
||||
@ -1,3 +1,7 @@
|
||||
[workspace]
|
||||
members=[ "lib", "bin" ]
|
||||
default-members = [ "lib" ]
|
||||
default-members = [ "lib" ]
|
||||
|
||||
[profile.release]
|
||||
lto = "fat"
|
||||
codegen-units = 1
|
||||
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "adf_bdd-solver"
|
||||
version = "0.2.1"
|
||||
version = "0.2.3"
|
||||
authors = ["Stefan Ellmauthaler <stefan.ellmauthaler@tu-dresden.de>"]
|
||||
edition = "2021"
|
||||
license = "GPL-3.0-only"
|
||||
@ -31,4 +31,4 @@ default = ["adhoccounting", "variablelist", "adf_bdd/default" ]
|
||||
adhoccounting = ["adf_bdd/adhoccounting"] # count models ad-hoc - disable if counting is not needed
|
||||
importexport = ["adf_bdd/importexport"]
|
||||
variablelist = [ "HashSet", "adf_bdd/variablelist" ]
|
||||
HashSet = ["adf_bdd/HashSet"]
|
||||
HashSet = ["adf_bdd/HashSet"]
|
||||
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "adf_bdd"
|
||||
version = "0.2.2"
|
||||
version = "0.2.3"
|
||||
authors = ["Stefan Ellmauthaler <stefan.ellmauthaler@tu-dresden.de>"]
|
||||
edition = "2021"
|
||||
repository = "https://github.com/ellmau/adf-obdd/"
|
||||
|
||||
130
lib/src/adf.rs
130
lib/src/adf.rs
@ -1,7 +1,7 @@
|
||||
/*!
|
||||
This module describes the abstract dialectical framework
|
||||
|
||||
- computing interpretations
|
||||
- computing interpretations and models
|
||||
- computing fixpoints
|
||||
*/
|
||||
|
||||
@ -388,20 +388,52 @@ impl Adf {
|
||||
}
|
||||
|
||||
fn two_val_model_counts(&mut self, interpr: &[Term]) -> Vec<Vec<Term>> {
|
||||
log::trace!("two_val_model_counts({:?}) called ", interpr);
|
||||
self.two_val_model_counts_logic(interpr, &vec![Term::UND; interpr.len()], 0)
|
||||
}
|
||||
|
||||
fn heuristic1(
|
||||
&self,
|
||||
lhs: (Var, Term),
|
||||
rhs: (Var, Term),
|
||||
interpr: &[Term],
|
||||
) -> std::cmp::Ordering {
|
||||
match self
|
||||
.bdd
|
||||
.var_impact(rhs.0, interpr)
|
||||
.cmp(&self.bdd.var_impact(lhs.0, interpr))
|
||||
{
|
||||
std::cmp::Ordering::Equal => match self
|
||||
.bdd
|
||||
.nacyc_var_impact(lhs.0, interpr)
|
||||
.cmp(&self.bdd.nacyc_var_impact(rhs.0, interpr))
|
||||
{
|
||||
std::cmp::Ordering::Equal => self
|
||||
.bdd
|
||||
.paths(lhs.1, true)
|
||||
.minimum()
|
||||
.cmp(&self.bdd.paths(rhs.1, true).minimum()),
|
||||
value => value,
|
||||
},
|
||||
value => value,
|
||||
}
|
||||
}
|
||||
fn two_val_model_counts_logic(
|
||||
&mut self,
|
||||
interpr: &[Term],
|
||||
will_be: &[Term],
|
||||
depth: usize,
|
||||
) -> Vec<Vec<Term>> {
|
||||
log::debug!("two_val_model_recursion_depth: {}/{}", depth, interpr.len());
|
||||
if let Some((idx, ac)) = interpr
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_idx, val)| !val.is_truth_value())
|
||||
.min_by(|(_idx_a, val_a), (_idx_b, val_b)| {
|
||||
self.bdd
|
||||
.models(**val_a, true)
|
||||
.minimum()
|
||||
.cmp(&self.bdd.models(**val_b, true).minimum())
|
||||
.filter(|(idx, val)| !(val.is_truth_value() || will_be[*idx].is_truth_value()))
|
||||
.min_by(|(idx_a, val_a), (idx_b, val_b)| {
|
||||
self.heuristic1((Var(*idx_a), **val_a), (Var(*idx_b), **val_b), interpr)
|
||||
})
|
||||
{
|
||||
let mut result = Vec::new();
|
||||
let check_models = !self.bdd.models(*ac, true).more_models();
|
||||
let check_models = !self.bdd.paths(*ac, true).more_models();
|
||||
log::trace!(
|
||||
"Identified Var({}) with ac {:?} to be {}",
|
||||
idx,
|
||||
@ -417,15 +449,16 @@ impl Adf {
|
||||
let res = negative
|
||||
.iter()
|
||||
.try_for_each(|var| {
|
||||
if new_int[var.value()].is_true() {
|
||||
if new_int[var.value()].is_true() || will_be[var.value()] == Term::TOP {
|
||||
return Err(());
|
||||
}
|
||||
new_int[var.value()] = Term::BOT;
|
||||
Ok(())
|
||||
})
|
||||
.and(positive.iter().try_for_each(|var| {
|
||||
if new_int[var.value()].is_truth_value()
|
||||
&& !new_int[var.value()].is_true()
|
||||
if (new_int[var.value()].is_truth_value()
|
||||
&& !new_int[var.value()].is_true())
|
||||
|| will_be[var.value()] == Term::BOT
|
||||
{
|
||||
return Err(());
|
||||
}
|
||||
@ -434,37 +467,81 @@ impl Adf {
|
||||
}));
|
||||
if res.is_ok() {
|
||||
new_int[idx] = if check_models { Term::TOP } else { Term::BOT };
|
||||
let upd_int = self.update_interpretation(&new_int);
|
||||
result.append(&mut self.two_val_model_counts(&upd_int));
|
||||
let upd_int = self.update_interpretation_fixpoint(&new_int);
|
||||
if self.check_consistency(&upd_int, will_be) {
|
||||
result.append(&mut self.two_val_model_counts_logic(
|
||||
&upd_int,
|
||||
will_be,
|
||||
depth + 1,
|
||||
));
|
||||
}
|
||||
}
|
||||
res
|
||||
});
|
||||
log::trace!("results found so far:{}", result.len());
|
||||
// checked one alternative, we can now conclude that only the other option may work
|
||||
log::trace!("checked one alternative, concluding the other value");
|
||||
log::debug!("checked one alternative, concluding the other value");
|
||||
let new_int = interpr
|
||||
.iter()
|
||||
.map(|tree| self.bdd.restrict(*tree, Var(idx), !check_models))
|
||||
.collect::<Vec<Term>>();
|
||||
let mut upd_int = self.update_interpretation(&new_int);
|
||||
let mut upd_int = self.update_interpretation_fixpoint(&new_int);
|
||||
|
||||
// TODO: should be "must be true/false" instead of setting it to TOP/BOT and will need sanity checks at every iteration
|
||||
log::trace!("\nnew_int {new_int:?}\nupd_int {upd_int:?}");
|
||||
if new_int[idx].no_inf_decrease(&upd_int[idx]) {
|
||||
if new_int[idx].no_inf_inconsistency(&upd_int[idx]) {
|
||||
upd_int[idx] = if check_models { Term::BOT } else { Term::TOP };
|
||||
if new_int[idx].no_inf_decrease(&upd_int[idx]) {
|
||||
result.append(&mut self.two_val_model_counts(&upd_int));
|
||||
if new_int[idx].no_inf_inconsistency(&upd_int[idx]) {
|
||||
let mut must_be_new = will_be.to_vec();
|
||||
must_be_new[idx] = new_int[idx];
|
||||
result.append(&mut self.two_val_model_counts_logic(
|
||||
&upd_int,
|
||||
&must_be_new,
|
||||
depth + 1,
|
||||
));
|
||||
}
|
||||
}
|
||||
result
|
||||
} else {
|
||||
// filter has created empty iterator
|
||||
vec![interpr.to_vec()]
|
||||
let concluded = interpr
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, val)| {
|
||||
if !val.is_truth_value() {
|
||||
will_be[idx]
|
||||
} else {
|
||||
*val
|
||||
}
|
||||
})
|
||||
.collect::<Vec<Term>>();
|
||||
let ac = self.ac.clone();
|
||||
let result = self.apply_interpretation(&ac, &concluded);
|
||||
if self.check_consistency(&result, &concluded) {
|
||||
vec![result]
|
||||
} else {
|
||||
vec![interpr.to_vec()]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn update_interpretation_fixpoint(&mut self, interpretation: &[Term]) -> Vec<Term> {
|
||||
let mut cur_int = interpretation.to_vec();
|
||||
loop {
|
||||
let new_int = self.update_interpretation(interpretation);
|
||||
if cur_int == new_int {
|
||||
return cur_int;
|
||||
} else {
|
||||
cur_int = new_int;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn update_interpretation(&mut self, interpretation: &[Term]) -> Vec<Term> {
|
||||
interpretation
|
||||
.iter()
|
||||
self.apply_interpretation(interpretation, interpretation)
|
||||
}
|
||||
|
||||
fn apply_interpretation(&mut self, ac: &[Term], interpretation: &[Term]) -> Vec<Term> {
|
||||
ac.iter()
|
||||
.map(|ac| {
|
||||
interpretation
|
||||
.iter()
|
||||
@ -480,6 +557,13 @@ impl Adf {
|
||||
.collect::<Vec<Term>>()
|
||||
}
|
||||
|
||||
fn check_consistency(&mut self, interpretation: &[Term], will_be: &[Term]) -> bool {
|
||||
interpretation
|
||||
.iter()
|
||||
.zip(will_be.iter())
|
||||
.all(|(int, wb)| wb.no_inf_inconsistency(int))
|
||||
}
|
||||
|
||||
/// Computes the complete models
|
||||
/// Returns an Iterator which contains all complete models
|
||||
pub fn complete<'a, 'c>(&'a mut self) -> impl Iterator<Item = Vec<Term>> + 'c
|
||||
|
||||
@ -73,7 +73,7 @@ impl Term {
|
||||
}
|
||||
|
||||
/// Returns true if the information of *other* does not decrease and it is not inconsistent.
|
||||
pub fn no_inf_decrease(&self, other: &Self) -> bool {
|
||||
pub fn no_inf_inconsistency(&self, other: &Self) -> bool {
|
||||
if self.compare_inf(other) {
|
||||
return true;
|
||||
}
|
||||
@ -185,7 +185,7 @@ impl BddNode {
|
||||
}
|
||||
}
|
||||
|
||||
/// Type alias for the pair of counter-models and models
|
||||
/// Represents the pair of counts, related to counter-models and models.
|
||||
#[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
|
||||
pub struct ModelCounts {
|
||||
/// Contains the number of counter-models
|
||||
@ -225,8 +225,8 @@ impl From<(usize, usize)> for ModelCounts {
|
||||
}
|
||||
}
|
||||
}
|
||||
/// Type alias for the Modelcounts and the depth of a given Node in a BDD
|
||||
pub type CountNode = (ModelCounts, usize);
|
||||
/// Type alias for the Modelcounts, Count of paths to bot resp top, and the depth of a given Node in a BDD
|
||||
pub type CountNode = (ModelCounts, ModelCounts, usize);
|
||||
/// Type alias for Facet counts, which contains number of facets and counter facets.
|
||||
pub type FacetCounts = (usize, usize);
|
||||
|
||||
|
||||
199
lib/src/obdd.rs
199
lib/src/obdd.rs
@ -51,11 +51,11 @@ impl Bdd {
|
||||
result
|
||||
.count_cache
|
||||
.borrow_mut()
|
||||
.insert(Term::TOP, (ModelCounts::top(), 0));
|
||||
.insert(Term::TOP, (ModelCounts::top(), ModelCounts::top(), 0));
|
||||
result
|
||||
.count_cache
|
||||
.borrow_mut()
|
||||
.insert(Term::BOT, (ModelCounts::bot(), 0));
|
||||
.insert(Term::BOT, (ModelCounts::bot(), ModelCounts::bot(), 0));
|
||||
result
|
||||
}
|
||||
}
|
||||
@ -228,22 +228,28 @@ impl Bdd {
|
||||
var_set.insert(var);
|
||||
self.var_deps.push(var_set);
|
||||
}
|
||||
log::debug!("newterm: {} as {:?}", new_term, node);
|
||||
#[cfg(feature = "adhoccounting")]
|
||||
{
|
||||
log::debug!("newterm: {} as {:?}", new_term, node);
|
||||
let mut count_cache = self.count_cache.borrow_mut();
|
||||
let (lo_counts, lodepth) = *count_cache.get(&lo).expect("Cache corrupted");
|
||||
let (hi_counts, hidepth) = *count_cache.get(&hi).expect("Cache corrupted");
|
||||
let (lo_counts, lo_paths, lodepth) =
|
||||
*count_cache.get(&lo).expect("Cache corrupted");
|
||||
let (hi_counts, hi_paths, hidepth) =
|
||||
*count_cache.get(&hi).expect("Cache corrupted");
|
||||
log::debug!(
|
||||
"lo (cm: {}, mo: {}, dp: {})",
|
||||
"lo (cm: {}, mo: {}, p-: {}, p+: {}, dp: {})",
|
||||
lo_counts.cmodels,
|
||||
lo_counts.models,
|
||||
lo_paths.cmodels,
|
||||
lo_paths.models,
|
||||
lodepth
|
||||
);
|
||||
log::debug!(
|
||||
"hi (cm: {}, mo: {}, dp: {})",
|
||||
"hi (cm: {}, mo: {}, p-: {}, p+: {}, dp: {})",
|
||||
hi_counts.cmodels,
|
||||
hi_counts.models,
|
||||
hi_paths.cmodels,
|
||||
hi_paths.models,
|
||||
hidepth
|
||||
);
|
||||
let (lo_exp, hi_exp) = if lodepth > hidepth {
|
||||
@ -260,6 +266,11 @@ impl Bdd {
|
||||
lo_counts.models * lo_exp + hi_counts.models * hi_exp,
|
||||
)
|
||||
.into(),
|
||||
(
|
||||
lo_paths.cmodels + hi_paths.cmodels,
|
||||
lo_paths.models + hi_paths.models,
|
||||
)
|
||||
.into(),
|
||||
std::cmp::max(lodepth, hidepth) + 1,
|
||||
),
|
||||
);
|
||||
@ -270,7 +281,7 @@ impl Bdd {
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the number of counter-models and models for a given BDD-tree
|
||||
/// Computes the number of counter-models and models for a given BDD-tree.
|
||||
///
|
||||
/// Use the flag `_memoization` to choose between using the memoization approach or not. (This flag does nothing if the feature `adhoccounting` is used)
|
||||
pub fn models(&self, term: Term, _memoization: bool) -> ModelCounts {
|
||||
@ -286,19 +297,56 @@ impl Bdd {
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the number of paths which lead to Bot respectively Top.
|
||||
///
|
||||
/// Use the flag `_memoization` to choose between using the memoization approach or not. (This flag does nothing if the feature `adhoccounting` is used)
|
||||
pub fn paths(&self, term: Term, _memoization: bool) -> ModelCounts {
|
||||
#[cfg(feature = "adhoccounting")]
|
||||
{
|
||||
return self.count_cache.borrow().get(&term).expect("The term should be originating from this bdd, otherwise the result would be inconsistent anyways").1;
|
||||
}
|
||||
#[cfg(not(feature = "adhoccounting"))]
|
||||
if _memoization {
|
||||
self.modelcount_memoization(term).1
|
||||
} else {
|
||||
self.modelcount_naive(term).1
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the maximal depth of the given sub-tree.
|
||||
#[allow(dead_code)] // max depth may be used in future heuristics
|
||||
pub fn max_depth(&self, term: Term) -> usize {
|
||||
#[cfg(feature = "adhoccounting")]
|
||||
{
|
||||
return self.count_cache.borrow().get(&term).expect("The term should be originating from this bdd, otherwise the result would be inconsistent anyways").2;
|
||||
}
|
||||
#[cfg(not(feature = "adhoccounting"))]
|
||||
match self.count_cache.borrow().get(&term) {
|
||||
Some((_mc, _pc, depth)) => *depth,
|
||||
None => {
|
||||
if term.is_truth_value() {
|
||||
0
|
||||
} else {
|
||||
self.max_depth(self.nodes[term.0].hi())
|
||||
.max(self.max_depth(self.nodes[term.0].lo()))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)] // dead code due to more efficient ad-hoc building, still used for a couple of tests
|
||||
/// Computes the number of counter-models, models, and variables for a given BDD-tree
|
||||
fn modelcount_naive(&self, term: Term) -> CountNode {
|
||||
if term == Term::TOP {
|
||||
(ModelCounts::top(), 0)
|
||||
(ModelCounts::top(), ModelCounts::top(), 0)
|
||||
} else if term == Term::BOT {
|
||||
(ModelCounts::bot(), 0)
|
||||
(ModelCounts::bot(), ModelCounts::bot(), 0)
|
||||
} else {
|
||||
let node = &self.nodes[term.0];
|
||||
let mut lo_exp = 0u32;
|
||||
let mut hi_exp = 0u32;
|
||||
let (lo_counts, lodepth) = self.modelcount_naive(node.lo());
|
||||
let (hi_counts, hidepth) = self.modelcount_naive(node.hi());
|
||||
let (lo_counts, lo_paths, lodepth) = self.modelcount_naive(node.lo());
|
||||
let (hi_counts, hi_paths, hidepth) = self.modelcount_naive(node.hi());
|
||||
if lodepth > hidepth {
|
||||
hi_exp = (lodepth - hidepth) as u32;
|
||||
} else {
|
||||
@ -310,6 +358,11 @@ impl Bdd {
|
||||
lo_counts.models * 2usize.pow(lo_exp) + hi_counts.models * 2usize.pow(hi_exp),
|
||||
)
|
||||
.into(),
|
||||
(
|
||||
lo_paths.cmodels + hi_paths.cmodels,
|
||||
lo_paths.models + hi_paths.models,
|
||||
)
|
||||
.into(),
|
||||
std::cmp::max(lodepth, hidepth) + 1,
|
||||
)
|
||||
}
|
||||
@ -317,9 +370,9 @@ impl Bdd {
|
||||
|
||||
fn modelcount_memoization(&self, term: Term) -> CountNode {
|
||||
if term == Term::TOP {
|
||||
(ModelCounts::top(), 0)
|
||||
(ModelCounts::top(), ModelCounts::top(), 0)
|
||||
} else if term == Term::BOT {
|
||||
(ModelCounts::bot(), 0)
|
||||
(ModelCounts::bot(), ModelCounts::bot(), 0)
|
||||
} else {
|
||||
if let Some(result) = self.count_cache.borrow().get(&term) {
|
||||
return *result;
|
||||
@ -328,8 +381,8 @@ impl Bdd {
|
||||
let node = &self.nodes[term.0];
|
||||
let mut lo_exp = 0u32;
|
||||
let mut hi_exp = 0u32;
|
||||
let (lo_counts, lodepth) = self.modelcount_memoization(node.lo());
|
||||
let (hi_counts, hidepth) = self.modelcount_memoization(node.hi());
|
||||
let (lo_counts, lo_paths, lodepth) = self.modelcount_memoization(node.lo());
|
||||
let (hi_counts, hi_paths, hidepth) = self.modelcount_memoization(node.hi());
|
||||
if lodepth > hidepth {
|
||||
hi_exp = (lodepth - hidepth) as u32;
|
||||
} else {
|
||||
@ -343,6 +396,11 @@ impl Bdd {
|
||||
+ hi_counts.models * 2usize.pow(hi_exp),
|
||||
)
|
||||
.into(),
|
||||
(
|
||||
lo_paths.cmodels + hi_paths.cmodels,
|
||||
lo_paths.models + hi_paths.models,
|
||||
)
|
||||
.into(),
|
||||
std::cmp::max(lodepth, hidepth) + 1,
|
||||
)
|
||||
};
|
||||
@ -358,10 +416,10 @@ impl Bdd {
|
||||
{
|
||||
self.count_cache
|
||||
.borrow_mut()
|
||||
.insert(Term::TOP, (ModelCounts::top(), 0));
|
||||
.insert(Term::TOP, (ModelCounts::top(), ModelCounts::top(), 0));
|
||||
self.count_cache
|
||||
.borrow_mut()
|
||||
.insert(Term::BOT, (ModelCounts::bot(), 0));
|
||||
.insert(Term::BOT, (ModelCounts::bot(), ModelCounts::bot(), 0));
|
||||
for i in 0..self.nodes.len() {
|
||||
log::debug!("fixing Term({})", i);
|
||||
self.modelcount_memoization(Term(i));
|
||||
@ -405,6 +463,29 @@ impl Bdd {
|
||||
var_set
|
||||
}
|
||||
}
|
||||
|
||||
pub fn var_impact(&self, var: Var, termlist: &[Term]) -> usize {
|
||||
termlist.iter().fold(0usize, |acc, val| {
|
||||
if self.var_dependencies(*val).contains(&var) {
|
||||
acc + 1
|
||||
} else {
|
||||
acc
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
pub fn nacyc_var_impact(&self, var: Var, termlist: &[Term]) -> usize {
|
||||
(0..termlist.len()).into_iter().fold(0usize, |acc, idx| {
|
||||
if self
|
||||
.var_dependencies(termlist[var.value()])
|
||||
.contains(&Var(idx))
|
||||
{
|
||||
acc + 1
|
||||
} else {
|
||||
acc
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@ -554,13 +635,46 @@ mod test {
|
||||
assert_eq!(bdd.models(Term::TOP, true), (0, 1).into());
|
||||
assert_eq!(bdd.models(Term::BOT, true), (1, 0).into());
|
||||
|
||||
assert_eq!(bdd.modelcount_naive(v1), ((1, 1).into(), 1));
|
||||
assert_eq!(bdd.modelcount_naive(formula1), ((3, 1).into(), 2));
|
||||
assert_eq!(bdd.modelcount_naive(formula2), ((1, 3).into(), 2));
|
||||
assert_eq!(bdd.modelcount_naive(formula3), ((2, 2).into(), 2));
|
||||
assert_eq!(bdd.modelcount_naive(formula4), ((5, 3).into(), 3));
|
||||
assert_eq!(bdd.modelcount_naive(Term::TOP), ((0, 1).into(), 0));
|
||||
assert_eq!(bdd.modelcount_naive(Term::BOT), ((1, 0).into(), 0));
|
||||
assert_eq!(bdd.paths(formula1, false), (2, 1).into());
|
||||
assert_eq!(bdd.paths(formula2, false), (1, 2).into());
|
||||
assert_eq!(bdd.paths(formula3, false), (2, 2).into());
|
||||
assert_eq!(bdd.paths(formula4, false), (3, 2).into());
|
||||
assert_eq!(bdd.paths(Term::TOP, false), (0, 1).into());
|
||||
assert_eq!(bdd.paths(Term::BOT, false), (1, 0).into());
|
||||
|
||||
assert_eq!(bdd.paths(v1, true), (1, 1).into());
|
||||
assert_eq!(bdd.paths(formula1, true), (2, 1).into());
|
||||
assert_eq!(bdd.paths(formula2, true), (1, 2).into());
|
||||
assert_eq!(bdd.paths(formula3, true), (2, 2).into());
|
||||
assert_eq!(bdd.paths(formula4, true), (3, 2).into());
|
||||
assert_eq!(bdd.paths(Term::TOP, true), (0, 1).into());
|
||||
assert_eq!(bdd.paths(Term::BOT, true), (1, 0).into());
|
||||
|
||||
assert_eq!(bdd.modelcount_naive(v1), ((1, 1).into(), (1, 1).into(), 1));
|
||||
assert_eq!(
|
||||
bdd.modelcount_naive(formula1),
|
||||
((3, 1).into(), (2, 1).into(), 2)
|
||||
);
|
||||
assert_eq!(
|
||||
bdd.modelcount_naive(formula2),
|
||||
((1, 3).into(), (1, 2).into(), 2)
|
||||
);
|
||||
assert_eq!(
|
||||
bdd.modelcount_naive(formula3),
|
||||
((2, 2).into(), (2, 2).into(), 2)
|
||||
);
|
||||
assert_eq!(
|
||||
bdd.modelcount_naive(formula4),
|
||||
((5, 3).into(), (3, 2).into(), 3)
|
||||
);
|
||||
assert_eq!(
|
||||
bdd.modelcount_naive(Term::TOP),
|
||||
((0, 1).into(), (0, 1).into(), 0)
|
||||
);
|
||||
assert_eq!(
|
||||
bdd.modelcount_naive(Term::BOT),
|
||||
((1, 0).into(), (1, 0).into(), 0)
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
bdd.modelcount_naive(formula4),
|
||||
@ -588,6 +702,11 @@ mod test {
|
||||
bdd.modelcount_naive(Term::BOT),
|
||||
bdd.modelcount_memoization(Term::BOT)
|
||||
);
|
||||
|
||||
assert_eq!(bdd.max_depth(Term::BOT), 0);
|
||||
assert_eq!(bdd.max_depth(v1), 1);
|
||||
assert_eq!(bdd.max_depth(formula3), 2);
|
||||
assert_eq!(bdd.max_depth(formula4), 3);
|
||||
}
|
||||
|
||||
#[cfg(feature = "variablelist")]
|
||||
@ -617,6 +736,36 @@ mod test {
|
||||
.for_each(|(left, right)| {
|
||||
assert!(left == right);
|
||||
});
|
||||
|
||||
assert_eq!(
|
||||
bdd.var_impact(Var(0), &[formula1, formula2, formula3, formula4]),
|
||||
4
|
||||
);
|
||||
assert_eq!(
|
||||
bdd.var_impact(Var(2), &[formula1, formula2, formula3, formula4]),
|
||||
1
|
||||
);
|
||||
assert_eq!(bdd.var_impact(Var(2), &[formula1, formula2, formula3]), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn var_impact() {
|
||||
let mut bdd = Bdd::new();
|
||||
let v1 = bdd.variable(Var(0));
|
||||
let v2 = bdd.variable(Var(1));
|
||||
let v3 = bdd.variable(Var(2));
|
||||
|
||||
let formula1 = bdd.and(v1, v2);
|
||||
let formula2 = bdd.or(v1, v2);
|
||||
|
||||
let ac: Vec<Term> = vec![formula1, formula2, v3];
|
||||
|
||||
assert_eq!(bdd.var_impact(Var(0), &ac), 2);
|
||||
assert_eq!(bdd.var_impact(Var(1), &ac), 2);
|
||||
assert_eq!(bdd.var_impact(Var(2), &ac), 1);
|
||||
|
||||
assert_eq!(bdd.nacyc_var_impact(Var(0), &ac), 2);
|
||||
assert_eq!(bdd.nacyc_var_impact(Var(2), &ac), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user