//! This module describes the abstract dialectical framework //! //! It handles //! - parsing of statements and acceptance functions //! - computing interpretations //! - computing fixpoints //! - computing the least fixpoint by using a shortcut use serde::{Deserialize, Serialize}; use crate::{ datatypes::{ adf::{ PrintableInterpretation, ThreeValuedInterpretationsIterator, TwoValuedInterpretationsIterator, VarContainer, }, Term, Var, }, obdd::Bdd, parser::{AdfParser, Formula}, }; #[derive(Serialize, Deserialize, Debug)] /// Representation of an ADF, with an ordering and dictionary of statement <-> number relations, a binary decision diagram, and a list of acceptance functions in Term representation pub struct Adf { ordering: VarContainer, bdd: Bdd, ac: Vec, } impl Adf { /// Instantiates a new ADF, based on the parser-data pub fn from_parser(parser: &AdfParser) -> Self { log::info!("[Start] instantiating BDD"); let mut result = Self { ordering: VarContainer::from_parser( parser.namelist_rc_refcell(), parser.dict_rc_refcell(), ), bdd: Bdd::new(), ac: vec![Term(0); parser.namelist_rc_refcell().as_ref().borrow().len()], }; (0..parser.namelist_rc_refcell().borrow().len()) .into_iter() .for_each(|value| { log::trace!("adding variable {}", Var(value)); result.bdd.variable(Var(value)); }); log::debug!("[Start] adding acs"); parser .formula_order() .iter() .enumerate() .for_each(|(insert_order, new_order)| { log::trace!( "Pos {}/{} formula {}, {:?}", insert_order + 1, parser.formula_count(), new_order, parser.ac_at(insert_order) ); let result_term = result.term(&parser.ac_at(insert_order).unwrap()); result.ac[*new_order] = result_term; }); log::info!("[Success] instantiated"); result } fn term(&mut self, formula: &Formula) -> Term { match formula { Formula::Bot => Bdd::constant(false), Formula::Top => Bdd::constant(true), Formula::Atom(val) => { let t1 = self.ordering.variable(val).unwrap(); self.bdd.variable(t1) } Formula::Not(val) => { let t1 = self.term(val); self.bdd.not(t1) } Formula::And(val1, val2) => { let t1 = self.term(val1); let t2 = self.term(val2); self.bdd.and(t1, t2) } Formula::Or(val1, val2) => { let t1 = self.term(val1); let t2 = self.term(val2); self.bdd.or(t1, t2) } Formula::Iff(val1, val2) => { let t1 = self.term(val1); let t2 = self.term(val2); self.bdd.iff(t1, t2) } Formula::Xor(val1, val2) => { let t1 = self.term(val1); let t2 = self.term(val2); self.bdd.xor(t1, t2) } Formula::Imp(val1, val2) => { let t1 = self.term(val1); let t2 = self.term(val2); self.bdd.imp(t1, t2) } } } /// Computes the grounded extension and returns it as a list pub fn grounded(&mut self) -> Vec { let ac = &self.ac.clone(); self.grounded_internal(ac) } fn grounded_internal(&mut self, interpretation: &[Term]) -> Vec { log::info!("[Start] grounded"); let mut t_vals: usize = interpretation .iter() .filter(|elem| elem.is_truth_value()) .count(); let mut new_interpretation: Vec = interpretation.into(); loop { let curr_interpretation = new_interpretation.clone(); let old_t_vals = t_vals; for ac in new_interpretation .iter_mut() .filter(|term| !term.is_truth_value()) { *ac = curr_interpretation .iter() .enumerate() .fold(*ac, |acc, (var, term)| { if term.is_truth_value() { self.bdd.restrict(acc, Var(var), term.is_true()) } else { acc } }); if ac.is_truth_value() { t_vals += 1; } } log::debug!( "old-int: {:?}, {} constants", curr_interpretation, old_t_vals ); log::debug!("new-int: {:?}, {} constants", new_interpretation, t_vals); if t_vals == old_t_vals { break; } } log::info!("[Done] grounded"); new_interpretation } /// Computes the first `max_values` stable models /// if max_values is 0, then all will be computed pub fn stable(&mut self, max_values: usize) -> Vec> { let grounded = self.grounded(); if max_values == 0 { self.stable_iter(&grounded).collect() } else { self.stable_iter(&grounded) .enumerate() .take_while(|(idx, _elem)| *idx < max_values) .map(|(_, elem)| elem) .collect() } } /// Computes the stable models /// Returns an Iterator which contains all stable models fn stable_iter<'a, 'b, 'c>( &'a mut self, grounded: &'b [Term], ) -> impl Iterator> + 'c where 'a: 'c, 'b: 'c, { TwoValuedInterpretationsIterator::new(grounded) .map(|interpretation| { let mut interpr = self.ac.clone(); for ac in interpr.iter_mut() { *ac = interpretation .iter() .enumerate() .fold(*ac, |acc, (var, term)| { if term.is_truth_value() && !term.is_true() { self.bdd.restrict(acc, Var(var), false) } else { acc } }); } let grounded_check = self.grounded_internal(&interpr); log::debug!( "grounded candidate\n{:?}\n{:?}", interpretation, grounded_check ); (interpretation, grounded_check) }) .filter(|(int, grd)| { int.iter() .zip(grd.iter()) .all(|(it, gr)| it.compare_inf(gr)) }) .map(|(int, _grd)| int) } /// Computes the first `max_values` stable models /// if max_values is 0, then all will be computed pub fn complete(&mut self, max_values: usize) -> Vec> { let grounded = self.grounded(); if max_values == 0 { self.complete_iter(&grounded).collect() } else { self.complete_iter(&grounded) .enumerate() .take_while(|(idx, _elem)| *idx < max_values) .map(|(_, elem)| elem) .collect() } } /// Computes the complete models /// Returns an Iterator which contains all complete models fn complete_iter<'a, 'b, 'c>( &'a mut self, grounded: &'b [Term], ) -> impl Iterator> + 'c where 'a: 'c, 'b: 'c, { let ac = self.ac.clone(); ThreeValuedInterpretationsIterator::new(grounded).filter(move |interpretation| { interpretation.iter().enumerate().all(|(ac_idx, it)| { log::trace!("idx [{}], term: {}", ac_idx, it); it.compare_inf(&interpretation.iter().enumerate().fold( ac[ac_idx], |acc, (var, term)| { if term.is_truth_value() { self.bdd.restrict(acc, Var(var), term.is_true()) } else { acc } }, )) }) }) } /// creates a [PrintableInterpretation] for output purposes pub fn print_interpretation<'a, 'b>( &'a self, interpretation: &'b [Term], ) -> PrintableInterpretation<'b> where 'a: 'b, { PrintableInterpretation::new(interpretation, &self.ordering) } } #[cfg(test)] mod test { use super::*; use test_log::test; #[test] fn from_parser() { let parser = AdfParser::default(); let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e))."; parser.parse()(input).unwrap(); let adf = Adf::from_parser(&parser); assert_eq!(adf.ordering.names().as_ref().borrow()[0], "a"); assert_eq!(adf.ordering.names().as_ref().borrow()[1], "c"); assert_eq!(adf.ordering.names().as_ref().borrow()[2], "b"); assert_eq!(adf.ordering.names().as_ref().borrow()[3], "e"); assert_eq!(adf.ordering.names().as_ref().borrow()[4], "d"); assert_eq!(adf.ac, vec![Term(4), Term(2), Term(7), Term(15), Term(12)]); let parser = AdfParser::default(); let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e))."; parser.parse()(input).unwrap(); parser.varsort_alphanum(); let adf = Adf::from_parser(&parser); assert_eq!(adf.ordering.names().as_ref().borrow()[0], "a"); assert_eq!(adf.ordering.names().as_ref().borrow()[1], "b"); assert_eq!(adf.ordering.names().as_ref().borrow()[2], "c"); assert_eq!(adf.ordering.names().as_ref().borrow()[3], "d"); assert_eq!(adf.ordering.names().as_ref().borrow()[4], "e"); assert_eq!(adf.ac, vec![Term(3), Term(7), Term(2), Term(11), Term(13)]); } #[test] fn serialize() { let parser = AdfParser::default(); let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e))."; parser.parse()(input).unwrap(); let mut adf = Adf::from_parser(&parser); let grounded = adf.grounded(); let serialized = serde_json::to_string(&adf).unwrap(); log::debug!("Serialized to {}", serialized); let result = r#"{"ordering":{"names":["a","c","b","e","d"],"mapping":{"b":2,"a":0,"e":3,"c":1,"d":4}},"bdd":{"nodes":[{"var":18446744073709551614,"lo":0,"hi":0},{"var":18446744073709551615,"lo":1,"hi":1},{"var":0,"lo":0,"hi":1},{"var":1,"lo":0,"hi":1},{"var":2,"lo":0,"hi":1},{"var":3,"lo":0,"hi":1},{"var":4,"lo":0,"hi":1},{"var":0,"lo":1,"hi":0},{"var":0,"lo":1,"hi":4},{"var":1,"lo":1,"hi":0},{"var":2,"lo":1,"hi":0},{"var":1,"lo":10,"hi":4},{"var":0,"lo":3,"hi":11},{"var":3,"lo":1,"hi":0},{"var":4,"lo":1,"hi":0},{"var":3,"lo":6,"hi":14}],"cache":[[{"var":3,"lo":1,"hi":0},13],[{"var":3,"lo":6,"hi":14},15],[{"var":4,"lo":0,"hi":1},6],[{"var":0,"lo":0,"hi":1},2],[{"var":4,"lo":1,"hi":0},14],[{"var":2,"lo":0,"hi":1},4],[{"var":1,"lo":0,"hi":1},3],[{"var":0,"lo":1,"hi":4},8],[{"var":3,"lo":0,"hi":1},5],[{"var":0,"lo":1,"hi":0},7],[{"var":2,"lo":1,"hi":0},10],[{"var":0,"lo":3,"hi":11},12],[{"var":1,"lo":1,"hi":0},9],[{"var":1,"lo":10,"hi":4},11]]},"ac":[4,2,7,15,12]}"#; let mut deserialized: Adf = serde_json::from_str(&result).unwrap(); assert_eq!(adf.ac, deserialized.ac); let grounded_import = deserialized.grounded(); assert_eq!(grounded, grounded_import); assert_eq!( format!("{}", adf.print_interpretation(&grounded)), format!("{}", deserialized.print_interpretation(&grounded_import)) ); } #[test] fn grounded() { let parser = AdfParser::default(); parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).") .unwrap(); let mut adf = Adf::from_parser(&parser); let result = adf.grounded(); assert_eq!( result, vec![Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)] ); assert_eq!( format!("{}", adf.print_interpretation(&result)), "T(a) u(b) u(c) u(d) F(e) T(f) \n" ); let parser = AdfParser::default(); parser.parse()( "s(a).s(b).s(c).s(d).s(e).ac(a,c(v)).ac(b,a).ac(c,b).ac(d,neg(c)).ac(e,and(a,d)).", ) .unwrap(); let mut adf = Adf::from_parser(&parser); let result = adf.grounded(); assert_eq!(result, vec![Term(1), Term(1), Term(1), Term(0), Term(0)]); } #[test] fn stable() { let parser = AdfParser::default(); parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).") .unwrap(); let mut adf = Adf::from_parser(&parser); assert_eq!( adf.stable(0), vec![vec![ Term::TOP, Term::BOT, Term::BOT, Term::TOP, Term::BOT, Term::TOP ]] ); assert_eq!( adf.stable(10), vec![vec![ Term::TOP, Term::BOT, Term::BOT, Term::TOP, Term::BOT, Term::TOP ]] ); let parser = AdfParser::default(); parser.parse()("s(a).s(b).ac(a,neg(b)).ac(b,neg(a)).").unwrap(); let mut adf = Adf::from_parser(&parser); assert_eq!(adf.stable(1), vec![vec![Term::BOT, Term::TOP]]); assert_eq!(adf.stable(2), adf.stable(0)); assert_eq!( adf.stable(0), vec![vec![Term::BOT, Term::TOP], vec![Term::TOP, Term::BOT]] ); let parser = AdfParser::default(); parser.parse()("s(a).s(b).ac(a,b).ac(b,a).").unwrap(); let mut adf = Adf::from_parser(&parser); assert_eq!(adf.stable(0), vec![vec![Term::BOT, Term::BOT]]); let parser = AdfParser::default(); parser.parse()("s(a).s(b).ac(a,neg(a)).ac(b,a).").unwrap(); let mut adf = Adf::from_parser(&parser); let empty: Vec> = Vec::new(); assert_eq!(adf.stable(0), empty); assert_eq!(adf.stable(99999), empty); } #[test] fn complete() { let parser = AdfParser::default(); parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).") .unwrap(); let mut adf = Adf::from_parser(&parser); assert_eq!( adf.complete(1), vec![vec![Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)]] ); assert_eq!( adf.complete(0), [ [Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)], [Term(1), Term(1), Term(1), Term(0), Term(0), Term(1)], [Term(1), Term(0), Term(0), Term(1), Term(0), Term(1)] ] ); } #[test] fn complete2() { let parser = AdfParser::default(); parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).") .unwrap(); let mut adf = Adf::from_parser(&parser); assert_eq!( adf.complete(0), [ [Term(1), Term(3), Term(3), Term(7)], [Term(1), Term(1), Term(1), Term(0)], [Term(1), Term(0), Term(0), Term(1)] ] ); for model in adf.complete(0) { println!("{}", adf.print_interpretation(&model)); } } }