1
0
mirror of https://github.com/ellmau/adf-obdd.git synced 2025-12-19 09:29:36 +01:00
adf-obdd/lib/src/obdd.rs
Stefan Ellmauthaler c9278cf5ce
milestone/frontend (#63)
* Introduce separate server package

* Implement basic visualization of solve response

* Make fetch endpoint depend on environment

* Introduce features flag for localhost cors support

* Serve static files from './assets' directory

* Add Dockerfile as example for server with frontend

* Support multiple solving strategies

* Support stable model semantics with nogoods

* Introduce custom node type for nicer layout

* Support more options and multiple models

* Use standard example for adfs on the frontend

* Use unoptimised hybrid step for better presentation

* Upgrade frontend dependencies

* Animate graph changes

* Experiment with timeout on API endpoints

* Relax CORS restrictions for local development

* Add API for adding/deleting users; login; logout

* Add API for uploading and solving adf problems

* Add API for getting and updating user

* Return early for parse and solve; Add Adf GET

* Add Delete and Index endpoints for ADFs

* Add basic UI for user endpoints

* Enforce username and password to be set on login

* Show colored snackbars

* Allow file upload for ADF; fix some server bugs

* Implement ADF Add Form and Overview

* Add Detail View for ADF problems

* Add docker-compose file for mongodb (development)

* Add mongodb (DEV) data directory to dockerignore

* Let unknown routes be handled by frontend

* Add legal information page to frontend

* Change G6 Graph layout slightly

* Add missing doc comments to lib

* Update legal information regarding cookies

* Add project logos to frontend

* Add help texts to frontend

* Move DoubleLabeledGraph from lib to server

* Give example for custom Adf datastructure in docs

* Update README and Project Website

* Update devskim.yml

* Add READMEs for frontend and server

---------

Co-authored-by: monsterkrampe <monsterkrampe@users.noreply.github.com>
2023-05-04 17:10:38 +02:00

929 lines
33 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Module which represents obdds.
//!
#[cfg(feature = "frontend")]
pub mod frontend;
pub mod vectorize;
use crate::datatypes::*;
use serde::{Deserialize, Serialize};
use std::collections::HashSet;
use std::{cell::RefCell, cmp::min, collections::HashMap, fmt::Display};
/// Contains the data of (possibly) multiple roBDDs, managed over one collection of nodes.
/// It has a couple of methods to instantiate, update, and query properties on a given roBDD.
/// Each roBDD is identified by its corresponding [`Term`], which implicitly identifies the root node of a roBDD.
#[derive(Debug, Serialize, Deserialize)]
pub struct Bdd {
/// The nodes of the [`Bdd`] with their edges
pub nodes: Vec<BddNode>,
#[cfg(feature = "variablelist")]
#[serde(skip)]
var_deps: Vec<HashSet<Var>>,
#[serde(with = "vectorize")]
cache: HashMap<BddNode, Term>,
#[serde(skip, default = "Bdd::default_count_cache")]
count_cache: RefCell<HashMap<Term, CountNode>>,
#[cfg(feature = "frontend")]
#[serde(skip)]
sender: Option<crossbeam_channel::Sender<BddNode>>,
#[cfg(feature = "frontend")]
#[serde(skip)]
receiver: Option<crossbeam_channel::Receiver<BddNode>>,
#[serde(skip)]
ite_cache: HashMap<(Term, Term, Term), Term>,
#[serde(skip)]
restrict_cache: HashMap<(Term, Var, bool), Term>,
}
impl Display for Bdd {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(f, " ")?;
for (idx, elem) in self.nodes.iter().enumerate() {
writeln!(f, "{} {}", idx, *elem)?;
}
Ok(())
}
}
impl Default for Bdd {
fn default() -> Self {
Self::new()
}
}
impl From<Vec<BddNode>> for Bdd {
fn from(nodes: Vec<BddNode>) -> Self {
let mut bdd = Self::new();
for node in nodes {
bdd.node(node.var(), node.lo(), node.hi());
}
bdd
}
}
impl Bdd {
/// Instantiate a new roBDD structure.
/// Constants for the [``][crate::datatypes::Term::TOP] and [`⊥`][crate::datatypes::Term::BOT] concepts are prepared in that step too.
pub fn new() -> Self {
#[cfg(not(feature = "adhoccounting"))]
{
Self {
nodes: vec![BddNode::bot_node(), BddNode::top_node()],
#[cfg(feature = "variablelist")]
var_deps: vec![HashSet::new(), HashSet::new()],
cache: HashMap::new(),
count_cache: RefCell::new(HashMap::new()),
#[cfg(feature = "frontend")]
sender: None,
#[cfg(feature = "frontend")]
receiver: None,
ite_cache: HashMap::new(),
restrict_cache: HashMap::new(),
}
}
#[cfg(feature = "adhoccounting")]
{
let result = Self {
nodes: vec![BddNode::bot_node(), BddNode::top_node()],
#[cfg(feature = "variablelist")]
var_deps: vec![HashSet::new(), HashSet::new()],
cache: HashMap::new(),
count_cache: RefCell::new(HashMap::new()),
#[cfg(feature = "frontend")]
sender: None,
#[cfg(feature = "frontend")]
receiver: None,
ite_cache: HashMap::new(),
restrict_cache: HashMap::new(),
};
result
.count_cache
.borrow_mut()
.insert(Term::TOP, (ModelCounts::top(), ModelCounts::top(), 0));
result
.count_cache
.borrow_mut()
.insert(Term::BOT, (ModelCounts::bot(), ModelCounts::bot(), 0));
result
}
}
fn default_count_cache() -> RefCell<HashMap<Term, CountNode>> {
RefCell::new(HashMap::new())
}
/// Instantiates a [variable][crate::datatypes::Var] and returns the representing roBDD as a [`Term`][crate::datatypes::Term].
pub fn variable(&mut self, var: Var) -> Term {
self.node(var, Term::BOT, Term::TOP)
}
/// Instantiates a constant, which is either [true] or [false].
pub fn constant(val: bool) -> Term {
if val {
Term::TOP
} else {
Term::BOT
}
}
/// Returns an roBDD, which represents the negation of the given roBDD.
pub fn not(&mut self, term: Term) -> Term {
self.if_then_else(term, Term::BOT, Term::TOP)
}
/// Returns an roBDD, which represents the conjunction of the two given roBDDs.
pub fn and(&mut self, term_a: Term, term_b: Term) -> Term {
self.if_then_else(term_a, term_b, Term::BOT)
}
/// Returns an roBDD, which represents the disjunction of the two given roBDDs.
pub fn or(&mut self, term_a: Term, term_b: Term) -> Term {
self.if_then_else(term_a, Term::TOP, term_b)
}
/// Returns an roBDD, which represents the implication of the two given roBDDs.
pub fn imp(&mut self, term_a: Term, term_b: Term) -> Term {
self.if_then_else(term_a, term_b, Term::TOP)
}
/// Returns an roBDD, which represents the if and only if relation of the two given roBDDs.
pub fn iff(&mut self, term_a: Term, term_b: Term) -> Term {
let not_b = self.not(term_b);
self.if_then_else(term_a, term_b, not_b)
}
/// Returns an roBDD, which represents the exclusive disjunction of the two given roBDDs.
pub fn xor(&mut self, term_a: Term, term_b: Term) -> Term {
let not_b = self.not(term_b);
self.if_then_else(term_a, not_b, term_b)
}
/// Computes the interpretations represented in the roBDD, which are either models or counter-models.
/// **goal_var** is the [variable][Var] to which the roBDD is related to and it is ensured that the goal is consistent with the respective interpretation.
/// **goal** is a boolean [variable][Var], which defines whether the models or counter-models are of interest.
pub fn interpretations(
&self,
tree: Term,
goal: bool,
goal_var: Var,
negative: &[Var],
positive: &[Var],
) -> Vec<(Vec<Var>, Vec<Var>)> {
let mut result = Vec::new();
let node = self.nodes[tree.value()];
let var = node.var();
if tree.is_truth_value() {
return Vec::new();
}
// if the current var is the goal var, then only work with the hi-node if the goal is true
if (goal_var != var) || goal {
if node.hi().is_truth_value() {
if node.hi().is_true() == goal {
result.push((negative.to_vec(), [positive, &[var]].concat()));
}
} else {
result.append(&mut self.interpretations(
node.hi(),
goal,
goal_var,
negative,
&[positive, &[var]].concat(),
));
}
}
// if the current var is the goal var, then only work with the lo-node if the goal is false
if (goal_var != var) || !goal {
if node.lo().is_truth_value() {
if node.lo().is_true() == goal {
result.push(([negative, &[var]].concat(), positive.to_vec()));
}
} else {
result.append(&mut self.interpretations(
node.lo(),
goal,
goal_var,
&[negative, &[var]].concat(),
positive,
));
}
}
result
}
/// Restrict the value of a given [variable][crate::datatypes::Var] to **val**.
pub fn restrict(&mut self, tree: Term, var: Var, val: bool) -> Term {
if let Some(result) = self.restrict_cache.get(&(tree, var, val)) {
*result
} else {
let node = self.nodes[tree.0];
#[cfg(feature = "variablelist")]
{
if !self.var_deps[tree.value()].contains(&var) {
return tree;
}
}
#[allow(clippy::collapsible_else_if)]
// Readability of algorithm > code-elegance
if node.var() > var || node.var() >= Var::BOT {
tree
} else if node.var() < var {
let lonode = self.restrict(node.lo(), var, val);
let hinode = self.restrict(node.hi(), var, val);
let result = self.node(node.var(), lonode, hinode);
self.restrict_cache.insert((tree, var, val), result);
result
} else {
if val {
let result = self.restrict(node.hi(), var, val);
self.restrict_cache.insert((tree, var, val), result);
result
} else {
let result = self.restrict(node.lo(), var, val);
self.restrict_cache.insert((tree, var, val), result);
result
}
}
}
}
/// Creates an roBDD, based on the relation of three roBDDs, which are in an `if-then-else` relation.
fn if_then_else(&mut self, i: Term, t: Term, e: Term) -> Term {
if i == Term::TOP {
t
} else if i == Term::BOT {
e
} else if t == e {
t
} else if t == Term::TOP && e == Term::BOT {
i
} else if let Some(result) = self.ite_cache.get(&(i, t, e)) {
*result
} else {
log::trace!("if_then_else: i {i} t {t} e {e} not found");
let minvar = Var(min(
self.nodes[i.value()].var().value(),
min(
self.nodes[t.value()].var().value(),
self.nodes[e.value()].var().value(),
),
));
let itop = self.restrict(i, minvar, true);
let ttop = self.restrict(t, minvar, true);
let etop = self.restrict(e, minvar, true);
let ibot = self.restrict(i, minvar, false);
let tbot = self.restrict(t, minvar, false);
let ebot = self.restrict(e, minvar, false);
let top_ite = self.if_then_else(itop, ttop, etop);
let bot_ite = self.if_then_else(ibot, tbot, ebot);
let result = self.node(minvar, bot_ite, top_ite);
self.ite_cache.insert((i, t, e), result);
result
}
}
/// Creates a new node in the roBDD.
/// It will not create duplicate nodes and uses already existing nodes, if applicable.
pub fn node(&mut self, var: Var, lo: Term, hi: Term) -> Term {
if lo == hi {
lo
} else {
let node = BddNode::new(var, lo, hi);
match self.cache.get(&node) {
Some(t) => *t,
None => {
let new_term = Term(self.nodes.len());
self.nodes.push(node);
self.cache.insert(node, new_term);
#[cfg(feature = "frontend")]
if let Some(send) = &self.sender {
match send.send(node) {
Ok(_) => log::trace!("Sent {node} to the channel."),
Err(e) => {
log::error!("Error {e} occurred when sending {node} to {:?}", send)
}
}
}
#[cfg(feature = "variablelist")]
{
let mut var_set: HashSet<Var> = self.var_deps[lo.value()]
.union(&self.var_deps[hi.value()])
.copied()
.collect();
var_set.insert(var);
self.var_deps.push(var_set);
}
log::trace!("newterm: {} as {:?}", new_term, node);
#[cfg(feature = "adhoccounting")]
{
let mut count_cache = self.count_cache.borrow_mut();
let (lo_counts, lo_paths, lodepth) =
*count_cache.get(&lo).expect("Cache corrupted");
let (hi_counts, hi_paths, hidepth) =
*count_cache.get(&hi).expect("Cache corrupted");
log::debug!(
"lo (cm: {}, mo: {}, p-: {}, p+: {}, dp: {})",
lo_counts.cmodels,
lo_counts.models,
lo_paths.cmodels,
lo_paths.models,
lodepth
);
log::debug!(
"hi (cm: {}, mo: {}, p-: {}, p+: {}, dp: {})",
hi_counts.cmodels,
hi_counts.models,
hi_paths.cmodels,
hi_paths.models,
hidepth
);
#[cfg(feature = "adhoccountmodels")]
let (lo_exp, hi_exp) = if lodepth > hidepth {
(1, 2usize.pow((lodepth - hidepth) as u32))
} else {
(2usize.pow((hidepth - lodepth) as u32), 1)
};
#[cfg(not(feature = "adhoccountmodels"))]
let (lo_exp, hi_exp) = (0, 0);
log::debug!("lo_exp {}, hi_exp {}", lo_exp, hi_exp);
count_cache.insert(
new_term,
(
(
lo_counts.cmodels * lo_exp + hi_counts.cmodels * hi_exp,
lo_counts.models * lo_exp + hi_counts.models * hi_exp,
)
.into(),
(
lo_paths.cmodels + hi_paths.cmodels,
lo_paths.models + hi_paths.models,
)
.into(),
std::cmp::max(lodepth, hidepth) + 1,
),
);
}
new_term
}
}
}
}
/// Computes the number of counter-models and models for a given roBDD.
///
/// Use the flag `_memoization` to choose between using the memoization approach or not. (This flag does nothing, if the feature `adhoccounting` is used)
pub fn models(&self, term: Term, _memoization: bool) -> ModelCounts {
#[cfg(feature = "adhoccountmodels")]
{
return self.count_cache.borrow().get(&term).expect("The term should be originating from this bdd, otherwise the result would be inconsistent anyways").0;
}
#[cfg(not(feature = "adhoccountmodels"))]
if _memoization {
self.modelcount_memoization(term).0
} else {
self.modelcount_naive(term).0
}
}
/// Computes the number of paths, which lead to ⊥ respectively .
///
/// Use the flag `_memoization` to choose between using the memoization approach or not. (This flag does nothing, if the feature `adhoccounting` is used)
pub fn paths(&self, term: Term, _memoization: bool) -> ModelCounts {
#[cfg(feature = "adhoccounting")]
{
return self.count_cache.borrow().get(&term).expect("The term should be originating from this bdd, otherwise the result would be inconsistent anyways").1;
}
#[cfg(not(feature = "adhoccounting"))]
if _memoization {
self.modelcount_memoization(term).1
} else {
self.modelcount_naive(term).1
}
}
/// Computes the maximal depth of the given sub-diagram.
///
/// Intuitively this will compute the longest possible path from **term** to a leaf-node (i.e., ⊥ or ).
#[allow(dead_code)] // max depth may be used in future heuristics
pub fn max_depth(&self, term: Term) -> usize {
#[cfg(feature = "adhoccounting")]
{
return self.count_cache.borrow().get(&term).expect("The term should be originating from this bdd, otherwise the result would be inconsistent anyways").2;
}
#[cfg(not(feature = "adhoccounting"))]
match self.count_cache.borrow().get(&term) {
Some((_mc, _pc, depth)) => *depth,
None => {
if term.is_truth_value() {
0
} else {
self.max_depth(self.nodes[term.0].hi())
.max(self.max_depth(self.nodes[term.0].lo()))
}
}
}
}
#[allow(dead_code)] // dead code due to more efficient ad-hoc building, still used for a couple of tests
/// Computes the number of counter-models, models, and variables for a given roBDD
fn modelcount_naive(&self, term: Term) -> CountNode {
if term == Term::TOP {
(ModelCounts::top(), ModelCounts::top(), 0)
} else if term == Term::BOT {
(ModelCounts::bot(), ModelCounts::bot(), 0)
} else {
let node = &self.nodes[term.0];
let mut lo_exp = 0u32;
let mut hi_exp = 0u32;
let (lo_counts, lo_paths, lodepth) = self.modelcount_naive(node.lo());
let (hi_counts, hi_paths, hidepth) = self.modelcount_naive(node.hi());
if lodepth > hidepth {
hi_exp = (lodepth - hidepth) as u32;
} else {
lo_exp = (hidepth - lodepth) as u32;
}
(
(
lo_counts.cmodels * 2usize.pow(lo_exp) + hi_counts.cmodels * 2usize.pow(hi_exp),
lo_counts.models * 2usize.pow(lo_exp) + hi_counts.models * 2usize.pow(hi_exp),
)
.into(),
(
lo_paths.cmodels + hi_paths.cmodels,
lo_paths.models + hi_paths.models,
)
.into(),
std::cmp::max(lodepth, hidepth) + 1,
)
}
}
fn modelcount_memoization(&self, term: Term) -> CountNode {
if term == Term::TOP {
(ModelCounts::top(), ModelCounts::top(), 0)
} else if term == Term::BOT {
(ModelCounts::bot(), ModelCounts::bot(), 0)
} else {
if let Some(result) = self.count_cache.borrow().get(&term) {
return *result;
}
let result = {
let node = &self.nodes[term.0];
let mut lo_exp = 0u32;
let mut hi_exp = 0u32;
let (lo_counts, lo_paths, lodepth) = self.modelcount_memoization(node.lo());
let (hi_counts, hi_paths, hidepth) = self.modelcount_memoization(node.hi());
if lodepth > hidepth {
hi_exp = (lodepth - hidepth) as u32;
} else {
lo_exp = (hidepth - lodepth) as u32;
}
(
(
lo_counts.cmodels * 2usize.pow(lo_exp)
+ hi_counts.cmodels * 2usize.pow(hi_exp),
lo_counts.models * 2usize.pow(lo_exp)
+ hi_counts.models * 2usize.pow(hi_exp),
)
.into(),
(
lo_paths.cmodels + hi_paths.cmodels,
lo_paths.models + hi_paths.models,
)
.into(),
std::cmp::max(lodepth, hidepth) + 1,
)
};
self.count_cache.borrow_mut().insert(term, result);
result
}
}
/// Repairs the internal structures after an import.
pub fn fix_import(&mut self) {
self.generate_var_dependencies();
#[cfg(feature = "adhoccounting")]
{
self.count_cache
.borrow_mut()
.insert(Term::TOP, (ModelCounts::top(), ModelCounts::top(), 0));
self.count_cache
.borrow_mut()
.insert(Term::BOT, (ModelCounts::bot(), ModelCounts::bot(), 0));
for i in 0..self.nodes.len() {
log::debug!("fixing Term({})", i);
self.modelcount_memoization(Term(i));
}
}
}
fn generate_var_dependencies(&mut self) {
#[cfg(feature = "variablelist")]
self.nodes.iter().for_each(|node| {
if node.var() >= Var::BOT {
self.var_deps.push(HashSet::new());
} else {
let mut var_set: HashSet<Var> = self.var_deps[node.lo().value()]
.union(&self.var_deps[node.hi().value()])
.copied()
.collect();
var_set.insert(node.var());
self.var_deps.push(var_set);
}
});
}
/// Returns a [HashSet] of [variables][crate::datatypes::Var], which occur in a given roBDD.
pub fn var_dependencies(&self, tree: Term) -> HashSet<Var> {
#[cfg(feature = "variablelist")]
{
self.var_deps[tree.value()].clone()
}
#[cfg(not(feature = "variablelist"))]
{
let node = self.nodes[tree.value()];
if node.var().is_constant() {
return HashSet::new();
}
let mut var_set = self
.var_dependencies(node.lo())
.union(&self.var_dependencies(node.hi()))
.copied()
.collect::<HashSet<Var>>();
var_set.insert(node.var());
var_set
}
}
/// Returns the variable impact of a [variable][crate::datatypes::Var] with respect to a given set of roBDDs.
pub fn passive_var_impact(&self, var: Var, termlist: &[Term]) -> usize {
termlist.iter().fold(0usize, |acc, val| {
if self.var_dependencies(*val).contains(&var) {
acc + 1
} else {
acc
}
})
}
/// Counts how often another roBDD uses a [variable][crate::datatypes::Var], which occurs in this roBDD.
pub fn active_var_impact(&self, var: Var, termlist: &[Term]) -> usize {
(0..termlist.len()).fold(0usize, |acc, idx| {
if self
.var_dependencies(termlist[var.value()])
.contains(&Var(idx))
{
acc + 1
} else {
acc
}
})
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn newbdd() {
let bdd = Bdd::new();
assert_eq!(bdd.nodes.len(), 2);
}
#[test]
fn addconst() {
let bdd = Bdd::new();
assert_eq!(Bdd::constant(true), Term::TOP);
assert_eq!(Bdd::constant(false), Term::BOT);
assert_eq!(bdd.nodes.len(), 2);
}
#[test]
fn addvar() {
let mut bdd = Bdd::new();
assert_eq!(bdd.variable(Var(0)), Term(2));
assert_eq!(bdd.variable(Var(1)), Term(3));
assert_eq!(Var(1), Var(1));
bdd.variable(Var(0));
assert_eq!(bdd.variable(Var(0)), Term(2));
}
#[test]
fn use_negation() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
assert_eq!(v1, 2.into());
assert_eq!(bdd.not(v1), Term(3));
}
#[test]
fn use_add() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
let v3 = bdd.variable(Var(2));
let a1 = bdd.and(v1, v2);
let a2 = bdd.and(a1, v3);
assert_eq!(a2, Term(7));
}
#[test]
fn use_or() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
let v3 = bdd.variable(Var(2));
let a1 = bdd.and(v1, v2);
let a2 = bdd.or(a1, v3);
assert_eq!(a2, Term(7));
}
#[test]
fn produce_different_conversions() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
assert_eq!(v1, Term(2));
assert_eq!(v2, Term(3));
let t1 = bdd.and(v1, v2);
let nt1 = bdd.not(t1);
let ft = bdd.or(v1, nt1);
assert_eq!(ft, Term::TOP);
let v3 = bdd.variable(Var(2));
let nv3 = bdd.not(v3);
assert_eq!(bdd.and(v3, nv3), Term::BOT);
let conj = bdd.and(v1, v2);
assert_eq!(bdd.restrict(conj, Var(0), false), Term::BOT);
assert_eq!(bdd.restrict(conj, Var(0), true), v2);
let a = bdd.and(v3, v2);
let b = bdd.or(v2, v1);
let con1 = bdd.and(a, conj);
let end = bdd.or(con1, b);
log::debug!("Restrict test: restrict({},{},false)", end, Var(1));
let x = bdd.restrict(end, Var(1), false);
assert_eq!(x, Term(2));
}
#[test]
fn display() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
let v3 = bdd.variable(Var(2));
let a1 = bdd.and(v1, v2);
let _a2 = bdd.or(a1, v3);
assert_eq!(format!("{}", bdd), " \n0 BddNode: Var(18446744073709551614), lo: Term(0), hi: Term(0)\n1 BddNode: Var(18446744073709551615), lo: Term(1), hi: Term(1)\n2 BddNode: Var(0), lo: Term(0), hi: Term(1)\n3 BddNode: Var(1), lo: Term(0), hi: Term(1)\n4 BddNode: Var(2), lo: Term(0), hi: Term(1)\n5 BddNode: Var(0), lo: Term(0), hi: Term(3)\n6 BddNode: Var(1), lo: Term(4), hi: Term(1)\n7 BddNode: Var(0), lo: Term(4), hi: Term(6)\n");
}
#[test]
fn counting() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
let v3 = bdd.variable(Var(2));
let formula1 = bdd.and(v1, v2);
let formula2 = bdd.or(v1, v2);
let formula3 = bdd.xor(v1, v2);
let formula4 = bdd.and(v3, formula2);
#[cfg(feature = "adhoccountmodels")]
assert_eq!(bdd.models(v1, false), (1, 1).into());
let mut x = bdd.count_cache.get_mut().iter().collect::<Vec<_>>();
x.sort();
log::debug!("{:?}", formula1);
for x in bdd.nodes.iter().enumerate() {
log::debug!("{:?}", x);
}
log::debug!("{:?}", x);
#[cfg(feature = "adhoccountmodels")]
{
assert_eq!(bdd.models(formula1, false), (3, 1).into());
assert_eq!(bdd.models(formula2, false), (1, 3).into());
assert_eq!(bdd.models(formula3, false), (2, 2).into());
assert_eq!(bdd.models(formula4, false), (5, 3).into());
assert_eq!(bdd.models(Term::TOP, false), (0, 1).into());
assert_eq!(bdd.models(Term::BOT, false), (1, 0).into());
assert_eq!(bdd.models(v1, true), (1, 1).into());
assert_eq!(bdd.models(formula1, true), (3, 1).into());
assert_eq!(bdd.models(formula2, true), (1, 3).into());
assert_eq!(bdd.models(formula3, true), (2, 2).into());
assert_eq!(bdd.models(formula4, true), (5, 3).into());
assert_eq!(bdd.models(Term::TOP, true), (0, 1).into());
assert_eq!(bdd.models(Term::BOT, true), (1, 0).into());
}
assert_eq!(bdd.paths(formula1, false), (2, 1).into());
assert_eq!(bdd.paths(formula2, false), (1, 2).into());
assert_eq!(bdd.paths(formula3, false), (2, 2).into());
assert_eq!(bdd.paths(formula4, false), (3, 2).into());
assert_eq!(bdd.paths(Term::TOP, false), (0, 1).into());
assert_eq!(bdd.paths(Term::BOT, false), (1, 0).into());
assert_eq!(bdd.paths(v1, true), (1, 1).into());
assert_eq!(bdd.paths(formula1, true), (2, 1).into());
assert_eq!(bdd.paths(formula2, true), (1, 2).into());
assert_eq!(bdd.paths(formula3, true), (2, 2).into());
assert_eq!(bdd.paths(formula4, true), (3, 2).into());
assert_eq!(bdd.paths(Term::TOP, true), (0, 1).into());
assert_eq!(bdd.paths(Term::BOT, true), (1, 0).into());
assert_eq!(bdd.modelcount_naive(v1), ((1, 1).into(), (1, 1).into(), 1));
assert_eq!(
bdd.modelcount_naive(formula1),
((3, 1).into(), (2, 1).into(), 2)
);
assert_eq!(
bdd.modelcount_naive(formula2),
((1, 3).into(), (1, 2).into(), 2)
);
assert_eq!(
bdd.modelcount_naive(formula3),
((2, 2).into(), (2, 2).into(), 2)
);
assert_eq!(
bdd.modelcount_naive(formula4),
((5, 3).into(), (3, 2).into(), 3)
);
assert_eq!(
bdd.modelcount_naive(Term::TOP),
((0, 1).into(), (0, 1).into(), 0)
);
assert_eq!(
bdd.modelcount_naive(Term::BOT),
((1, 0).into(), (1, 0).into(), 0)
);
#[cfg(feature = "adhoccountmodels")]
{
assert_eq!(
bdd.modelcount_naive(formula4),
bdd.modelcount_memoization(formula4)
);
assert_eq!(bdd.modelcount_naive(v1), bdd.modelcount_memoization(v1));
assert_eq!(
bdd.modelcount_naive(formula1),
bdd.modelcount_memoization(formula1)
);
assert_eq!(
bdd.modelcount_naive(formula2),
bdd.modelcount_memoization(formula2)
);
assert_eq!(
bdd.modelcount_naive(formula3),
bdd.modelcount_memoization(formula3)
);
assert_eq!(
bdd.modelcount_naive(Term::TOP),
bdd.modelcount_memoization(Term::TOP)
);
assert_eq!(
bdd.modelcount_naive(Term::BOT),
bdd.modelcount_memoization(Term::BOT)
);
}
assert_eq!(bdd.max_depth(Term::BOT), 0);
assert_eq!(bdd.max_depth(v1), 1);
assert_eq!(bdd.max_depth(formula3), 2);
assert_eq!(bdd.max_depth(formula4), 3);
}
#[cfg(feature = "variablelist")]
#[test]
fn generate_var_dependencies() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
let v3 = bdd.variable(Var(2));
let formula1 = bdd.and(v1, v2);
let formula2 = bdd.or(v1, v2);
let formula3 = bdd.xor(v1, v2);
let formula4 = bdd.and(v3, formula2);
bdd.iff(formula1, formula3);
bdd.not(formula4);
let constructed = bdd.var_deps.clone();
bdd.var_deps = Vec::new();
bdd.generate_var_dependencies();
constructed
.iter()
.zip(bdd.var_deps.iter())
.for_each(|(left, right)| {
assert!(left == right);
});
assert_eq!(
bdd.passive_var_impact(Var(0), &[formula1, formula2, formula3, formula4]),
4
);
assert_eq!(
bdd.passive_var_impact(Var(2), &[formula1, formula2, formula3, formula4]),
1
);
assert_eq!(
bdd.passive_var_impact(Var(2), &[formula1, formula2, formula3]),
0
);
}
#[test]
fn var_impact() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
let v3 = bdd.variable(Var(2));
let formula1 = bdd.and(v1, v2);
let formula2 = bdd.or(v1, v2);
let ac: Vec<Term> = vec![formula1, formula2, v3];
assert_eq!(bdd.passive_var_impact(Var(0), &ac), 2);
assert_eq!(bdd.passive_var_impact(Var(1), &ac), 2);
assert_eq!(bdd.passive_var_impact(Var(2), &ac), 1);
assert_eq!(bdd.active_var_impact(Var(0), &ac), 2);
assert_eq!(bdd.active_var_impact(Var(2), &ac), 1);
}
#[test]
fn interpretations() {
let mut bdd = Bdd::new();
let v1 = bdd.variable(Var(0));
let v2 = bdd.variable(Var(1));
let formula1 = bdd.and(v1, v2);
let formula2 = bdd.xor(v1, v2);
assert_eq!(
bdd.interpretations(formula1, true, Var(2), &[], &[]),
vec![(vec![], vec![Var(0), Var(1)])]
);
assert_eq!(
bdd.interpretations(formula1, true, Var(0), &[], &[]),
vec![(vec![], vec![Var(0), Var(1)])]
);
assert_eq!(
bdd.interpretations(formula1, false, Var(2), &[], &[]),
vec![(vec![Var(1)], vec![Var(0)]), (vec![Var(0)], vec![])]
);
assert_eq!(
bdd.interpretations(formula1, false, Var(0), &[], &[]),
vec![(vec![Var(0)], vec![])]
);
assert_eq!(
bdd.interpretations(formula2, false, Var(2), &[], &[]),
vec![
(vec![], vec![Var(0), Var(1)]),
(vec![Var(0), Var(1)], vec![])
]
);
assert_eq!(
bdd.interpretations(formula2, true, Var(2), &[], &[]),
vec![(vec![Var(1)], vec![Var(0)]), (vec![Var(0)], vec![Var(1)])]
);
assert_eq!(
bdd.interpretations(formula2, true, Var(0), &[], &[]),
vec![(vec![Var(1)], vec![Var(0)])]
);
assert_eq!(
bdd.interpretations(Term::TOP, true, Var(0), &[], &[]),
vec![]
);
}
}