1
0
mirror of https://github.com/ellmau/adf-obdd.git synced 2025-12-20 09:39:38 +01:00
adf-obdd/lib/src/adf.rs
2023-03-24 13:22:57 +01:00

1367 lines
50 KiB
Rust

/*!
This module describes the abstract dialectical framework.
- computing interpretations and models
- computing fixpoints
*/
pub mod heuristics;
use std::cell::RefCell;
use crate::{
datatypes::{
adf::{
PrintDictionary, PrintableInterpretation, ThreeValuedInterpretationsIterator,
TwoValuedInterpretationsIterator, VarContainer,
},
FacetCounts, ModelCounts, Term, Var,
},
nogoods::{NoGood, NoGoodStore},
obdd::Bdd,
parser::{AdfParser, Formula},
};
use rand::{rngs::StdRng, SeedableRng};
use serde::{Deserialize, Serialize};
use self::heuristics::Heuristic;
#[derive(Serialize, Deserialize, Debug)]
/// Representation of an ADF, with an ordering and dictionary which relates statements to numbers, a binary decision diagram, and a list of acceptance conditions in [`Term`][crate::datatypes::Term] representation.
///
/// Please note that due to the nature of the underlying reduced and ordered Bdd the concept of a [`Term`][crate::datatypes::Term] represents one (sub) formula as well as truth-values.
pub struct Adf {
// TODO: none of this should be public
pub ordering: VarContainer,
pub bdd: Bdd,
pub ac: Vec<Term>,
#[serde(skip, default = "Adf::default_rng")]
rng: RefCell<StdRng>,
}
impl Default for Adf {
fn default() -> Self {
Self {
ordering: VarContainer::default(),
bdd: Bdd::new(),
ac: Vec::new(),
rng: Adf::default_rng(),
}
}
}
impl Adf {
/// Instantiates a new ADF, based on the [parser-data][crate::parser::AdfParser].
pub fn from_parser(parser: &AdfParser) -> Self {
log::info!("[Start] instantiating BDD");
let mut result = Self {
ordering: parser.var_container(),
bdd: Bdd::new(),
ac: vec![Term(0); parser.dict_size()],
rng: Adf::default_rng(),
};
(0..parser.dict_size()).into_iter().for_each(|value| {
log::trace!("adding variable {}", Var(value));
result.bdd.variable(Var(value));
});
log::debug!("[Start] adding acs");
parser
.formula_order()
.iter()
.enumerate()
.for_each(|(insert_order, new_order)| {
log::trace!(
"Pos {}/{} formula {}, {:?}",
insert_order + 1,
parser.formula_count(),
new_order,
parser.ac_at(insert_order)
);
let result_term = result.term(&parser.ac_at(insert_order).expect(
"Index should exist, because the data originates from the same parser object",
));
result.ac[*new_order] = result_term;
});
log::info!("[Success] instantiated");
result
}
pub(crate) fn from_biodivine_vector(
ordering: &VarContainer,
bio_ac: &[biodivine_lib_bdd::Bdd],
) -> Self {
let mut result = Self {
ordering: ordering.clone(),
bdd: Bdd::new(),
ac: vec![Term(0); bio_ac.len()],
rng: Adf::default_rng(),
};
result
.ac
.iter_mut()
.zip(bio_ac.iter())
.for_each(|(new_ac, bdd_ac)| {
if bdd_ac.is_true() {
*new_ac = Bdd::constant(true);
} else if bdd_ac.is_false() {
*new_ac = Bdd::constant(false);
} else {
// compound formula
let mut term_vec: Vec<Term> = Vec::new();
for (idx, tuple) in bdd_ac
.to_string()
.split('|')
.filter(|tuple| !tuple.is_empty())
.enumerate()
{
let node_elements = tuple.split(',').collect::<Vec<&str>>();
if idx == 0 {
term_vec.push(Bdd::constant(false));
} else if idx == 1 {
term_vec.push(Bdd::constant(true));
} else {
let new_term = result.bdd.node(
Var(node_elements[0]
.parse::<usize>()
.expect("Var should be number")),
term_vec[node_elements[1]
.parse::<usize>()
.expect("Termpos should be a valid number")],
term_vec[node_elements[2]
.parse::<usize>()
.expect("Termpos should be a valid number")],
);
term_vec.push(new_term);
}
*new_ac = *term_vec
.last()
.expect("There should be one element in the vector");
}
}
});
log::trace!("ordering: {:?}", result.ordering);
log::trace!("adf {:?} instantiated with bdd {}", result.ac, result.bdd);
result
}
fn default_rng() -> RefCell<StdRng> {
RefCell::new(StdRng::from_entropy())
}
/// Sets a cryptographiclly strong seed
pub fn seed(&mut self, seed: [u8; 32]) {
self.rng = RefCell::new(StdRng::from_seed(seed))
}
/// Instantiates a new ADF, based on a [biodivine adf][crate::adfbiodivine::Adf].
pub fn from_biodivine(bio_adf: &super::adfbiodivine::Adf) -> Self {
Self::from_biodivine_vector(bio_adf.var_container(), bio_adf.ac())
}
fn term(&mut self, formula: &Formula) -> Term {
match formula {
Formula::Bot => Bdd::constant(false),
Formula::Top => Bdd::constant(true),
Formula::Atom(val) => {
let t1 = self.ordering.variable(val).expect("Variable should exist, because the ordering has been filled by the same parser as the input formula comes from");
self.bdd.variable(t1)
}
Formula::Not(val) => {
let t1 = self.term(val);
self.bdd.not(t1)
}
Formula::And(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.and(t1, t2)
}
Formula::Or(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.or(t1, t2)
}
Formula::Iff(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.iff(t1, t2)
}
Formula::Xor(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.xor(t1, t2)
}
Formula::Imp(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.imp(t1, t2)
}
}
}
/// Computes the grounded extension and returns it as a list.
pub fn grounded(&mut self) -> Vec<Term> {
log::info!("[Start] grounded");
let ac = &self.ac.clone();
let result = self.grounded_internal(ac);
log::info!("[Done] grounded");
result
}
fn grounded_internal(&mut self, interpretation: &[Term]) -> Vec<Term> {
let mut t_vals: usize = interpretation
.iter()
.filter(|elem| elem.is_truth_value())
.count();
let mut new_interpretation: Vec<Term> = interpretation.into();
loop {
let curr_interpretation = new_interpretation.clone();
let old_t_vals = t_vals;
for ac in new_interpretation
.iter_mut()
.filter(|term| !term.is_truth_value())
{
*ac = curr_interpretation
.iter()
.enumerate()
.fold(*ac, |acc, (var, term)| {
if term.is_truth_value() {
self.bdd.restrict(acc, Var(var), term.is_true())
} else {
acc
}
});
if ac.is_truth_value() {
t_vals += 1;
}
}
log::debug!(
"old-int: {:?}, {} constants",
curr_interpretation,
old_t_vals
);
log::debug!("new-int: {:?}, {} constants", new_interpretation, t_vals);
if t_vals == old_t_vals {
break;
}
}
new_interpretation
}
/// Computes the stable models.
/// Returns an Iterator which contains all stable models.
pub fn stable<'a, 'c>(&'a mut self) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
{
let grounded = self.grounded();
TwoValuedInterpretationsIterator::new(&grounded)
.map(|interpretation| {
let mut interpr = self.ac.clone();
for ac in interpr.iter_mut() {
*ac = interpretation
.iter()
.enumerate()
.fold(*ac, |acc, (var, term)| {
if term.is_truth_value() && !term.is_true() {
self.bdd.restrict(acc, Var(var), false)
} else {
acc
}
});
}
let grounded_check = self.grounded_internal(&interpr);
log::debug!(
"grounded candidate\n{:?}\n{:?}",
interpretation,
grounded_check
);
(interpretation, grounded_check)
})
.filter(|(int, grd)| {
int.iter()
.zip(grd.iter())
.all(|(it, gr)| it.compare_inf(gr))
})
.map(|(int, _grd)| int)
}
/// Computes the stable models.
/// Returns a vector with all stable models, using a single-formula representation in biodivine to enumerate the possible models.
/// Note that the biodivine adf needs to be the one which instantiated the adf (if applicable).
pub fn stable_bdd_representation(
&mut self,
biodivine: &crate::adfbiodivine::Adf,
) -> Vec<Vec<Term>> {
biodivine
.stable_model_candidates()
.into_iter()
.filter(|terms| {
let mut interpr = self.ac.clone();
for ac in interpr.iter_mut() {
*ac = terms.iter().enumerate().fold(*ac, |acc, (var, term)| {
if term.is_truth_value() && !term.is_true() {
self.bdd.restrict(acc, Var(var), false)
} else {
acc
}
});
}
let grounded_check = self.grounded_internal(&interpr);
terms
.iter()
.zip(grounded_check.iter())
.all(|(left, right)| left.compare_inf(right))
})
.collect::<Vec<Vec<Term>>>()
}
/// Computes the stable models.
/// Returns an Iterator which contains all stable models.
pub fn stable_with_prefilter<'a, 'c>(&'a mut self) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
{
let grounded = self.grounded();
TwoValuedInterpretationsIterator::new(&grounded)
.map(|interpretation| {
if interpretation.iter().enumerate().all(|(ac_idx, it)| {
it.compare_inf(&interpretation.iter().enumerate().fold(
self.ac[ac_idx],
|acc, (var, term)| {
if term.is_truth_value() {
self.bdd.restrict(acc, Var(var), term.is_true())
} else {
acc
}
},
))
}) {
let mut interpr = self.ac.clone();
for ac in interpr.iter_mut() {
*ac = interpretation
.iter()
.enumerate()
.fold(*ac, |acc, (var, term)| {
if term.is_truth_value() && !term.is_true() {
self.bdd.restrict(acc, Var(var), false)
} else {
acc
}
});
}
let grounded_check = self.grounded_internal(&interpr);
log::debug!(
"grounded candidate\n{:?}\n{:?}",
interpretation,
grounded_check
);
(interpretation, grounded_check)
} else {
(vec![Term::BOT], vec![Term::TOP])
}
})
.filter(|(int, grd)| {
int.iter()
.zip(grd.iter())
.all(|(it, gr)| it.compare_inf(gr))
})
.map(|(int, _grd)| int)
}
/// Computes the stable models.
/// Returns an iterator which contains all stable models.
/// This variant uses the heuristic, which uses maximal [var impact][crate::obdd::Bdd::passive_var_impact], minimal [self-cycle impact][crate::obdd::Bdd::active_var_impact] and the minimal amount of [paths][crate::obdd::Bdd::paths].
pub fn stable_count_optimisation_heu_a<'a, 'c>(
&'a mut self,
) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
{
log::debug!("[Start] stable count optimisation");
let grounded = self.grounded();
self.two_val_model_counts(&grounded, Self::heu_max_imp_min_nacyc_impact_min_paths)
.into_iter()
.filter(|int| self.stability_check(int))
}
/// Computes the stable models.
/// Returns an iterator which contains all stable models.
/// This variant uses the heuristic, which uses minimal number of [paths][crate::obdd::Bdd::paths] and maximal [variable-impact][crate::obdd::Bdd::passive_var_impact].
pub fn stable_count_optimisation_heu_b<'a, 'c>(
&'a mut self,
) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
{
log::debug!("[Start] stable count optimisation");
let grounded = self.grounded();
self.two_val_model_counts(&grounded, Self::heu_min_paths_max_imp)
.into_iter()
.filter(|int| self.stability_check(int))
}
fn stability_check(&mut self, interpretation: &[Term]) -> bool {
let mut new_int = self.ac.clone();
for ac in new_int.iter_mut() {
*ac = interpretation
.iter()
.enumerate()
.fold(*ac, |acc, (var, term)| {
if term.is_truth_value() && !term.is_true() {
self.bdd.restrict(acc, Var(var), false)
} else {
acc
}
});
}
let grd = self.grounded_internal(&new_int);
for (idx, grd) in grd.iter().enumerate() {
if !grd.compare_inf(&interpretation[idx]) {
return false;
}
}
true
}
fn is_two_valued(&self, interpretation: &[Term]) -> bool {
interpretation.iter().all(|t| t.is_truth_value())
}
fn two_val_model_counts<H>(&mut self, interpr: &[Term], heuristic: H) -> Vec<Vec<Term>>
where
H: Fn(&Self, (Var, Term), (Var, Term), &[Term]) -> std::cmp::Ordering + Copy,
{
self.two_val_model_counts_logic(interpr, &vec![Term::UND; interpr.len()], 0, heuristic)
}
fn heu_max_imp_min_nacyc_impact_min_paths(
&self,
lhs: (Var, Term),
rhs: (Var, Term),
interpr: &[Term],
) -> std::cmp::Ordering {
match self
.bdd
.passive_var_impact(rhs.0, interpr)
.cmp(&self.bdd.passive_var_impact(lhs.0, interpr))
{
std::cmp::Ordering::Equal => match self
.bdd
.active_var_impact(lhs.0, interpr)
.cmp(&self.bdd.active_var_impact(rhs.0, interpr))
{
std::cmp::Ordering::Equal => self
.bdd
.paths(lhs.1, true)
.minimum()
.cmp(&self.bdd.paths(rhs.1, true).minimum()),
value => value,
},
value => value,
}
}
fn heu_min_paths_max_imp(
&self,
lhs: (Var, Term),
rhs: (Var, Term),
interpr: &[Term],
) -> std::cmp::Ordering {
match self
.bdd
.paths(lhs.1, true)
.minimum()
.cmp(&self.bdd.paths(rhs.1, true).minimum())
{
std::cmp::Ordering::Equal => self
.bdd
.passive_var_impact(rhs.0, interpr)
.cmp(&self.bdd.passive_var_impact(lhs.0, interpr)),
value => value,
}
}
fn two_val_model_counts_logic<H>(
&mut self,
interpr: &[Term],
will_be: &[Term],
depth: usize,
heuristic: H,
) -> Vec<Vec<Term>>
where
H: Fn(&Self, (Var, Term), (Var, Term), &[Term]) -> std::cmp::Ordering + Copy,
{
log::debug!("two_val_model_recursion_depth: {}/{}", depth, interpr.len());
if let Some((idx, ac)) = interpr
.iter()
.enumerate()
.filter(|(idx, val)| !(val.is_truth_value() || will_be[*idx].is_truth_value()))
.min_by(|(idx_a, val_a), (idx_b, val_b)| {
heuristic(
self,
(Var(*idx_a), **val_a),
(Var(*idx_b), **val_b),
interpr,
)
})
{
let mut result = Vec::new();
let check_models = !self.bdd.paths(*ac, true).more_models();
log::trace!(
"Identified Var({}) with ac {:?} to be {}",
idx,
ac,
check_models
);
let _ = self // return value can be ignored, but must be catched
.bdd
.interpretations(*ac, check_models, Var(idx), &[], &[])
.iter()
.try_for_each(|(negative, positive)| {
let mut new_int = interpr.to_vec();
let res = negative
.iter()
.try_for_each(|var| {
if new_int[var.value()].is_true() || will_be[var.value()] == Term::TOP {
return Err(());
}
new_int[var.value()] = Term::BOT;
Ok(())
})
.and(positive.iter().try_for_each(|var| {
if (new_int[var.value()].is_truth_value()
&& !new_int[var.value()].is_true())
|| will_be[var.value()] == Term::BOT
{
return Err(());
}
new_int[var.value()] = Term::TOP;
Ok(())
}));
if res.is_ok() {
new_int[idx] = if check_models { Term::TOP } else { Term::BOT };
let upd_int = self.update_interpretation_fixpoint(&new_int);
if self.check_consistency(&upd_int, will_be) {
result.append(&mut self.two_val_model_counts_logic(
&upd_int,
will_be,
depth + 1,
heuristic,
));
}
}
res
});
log::trace!("results found so far:{}", result.len());
// checked one alternative, we can now conclude that only the other option may work
log::debug!("checked one alternative, concluding the other value");
let new_int = interpr
.iter()
.map(|tree| self.bdd.restrict(*tree, Var(idx), !check_models))
.collect::<Vec<Term>>();
let mut upd_int = self.update_interpretation_fixpoint(&new_int);
log::trace!("\nnew_int {new_int:?}\nupd_int {upd_int:?}");
if new_int[idx].no_inf_inconsistency(&upd_int[idx]) {
upd_int[idx] = if check_models { Term::BOT } else { Term::TOP };
if new_int[idx].no_inf_inconsistency(&upd_int[idx]) {
let mut must_be_new = will_be.to_vec();
must_be_new[idx] = new_int[idx];
result.append(&mut self.two_val_model_counts_logic(
&upd_int,
&must_be_new,
depth + 1,
heuristic,
));
}
}
result
} else {
// filter has created empty iterator
let concluded = interpr
.iter()
.enumerate()
.map(|(idx, val)| {
if !val.is_truth_value() {
will_be[idx]
} else {
*val
}
})
.collect::<Vec<Term>>();
let ac = self.ac.clone();
let result = self.apply_interpretation(&ac, &concluded);
if self.check_consistency(&result, &concluded) {
vec![result]
} else {
vec![interpr.to_vec()]
}
}
}
fn update_interpretation_fixpoint(&mut self, interpretation: &[Term]) -> Vec<Term> {
let mut cur_int = interpretation.to_vec();
loop {
let new_int = self.update_interpretation(interpretation);
if cur_int == new_int {
return cur_int;
} else {
cur_int = new_int;
}
}
}
/// Constructs the fixpoint of the given interpretation with respect to the ADF.
/// sets _update_ to [`true`] if the value has been updated and to [`false`] otherwise.
fn update_interpretation_fixpoint_upd(
&mut self,
interpretation: &[Term],
update: &mut bool,
) -> Vec<Term> {
let mut cur_int = interpretation.to_vec();
*update = false;
loop {
let new_int = self.update_interpretation(interpretation);
if cur_int == new_int {
return cur_int;
} else {
cur_int = new_int;
*update = true;
}
}
}
fn update_interpretation(&mut self, interpretation: &[Term]) -> Vec<Term> {
self.apply_interpretation(interpretation, interpretation)
}
fn apply_interpretation(&mut self, ac: &[Term], interpretation: &[Term]) -> Vec<Term> {
ac.iter()
.map(|ac| {
interpretation
.iter()
.enumerate()
.fold(*ac, |acc, (idx, val)| {
if val.is_truth_value() {
self.bdd.restrict(acc, Var(idx), val.is_true())
} else {
acc
}
})
})
.collect::<Vec<Term>>()
}
fn check_consistency(&mut self, interpretation: &[Term], will_be: &[Term]) -> bool {
interpretation
.iter()
.zip(will_be.iter())
.all(|(int, wb)| wb.no_inf_inconsistency(int))
}
/// Computes the complete models
/// Returns an Iterator which contains all complete models
pub fn complete<'a, 'c>(&'a mut self) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
{
let grounded = self.grounded();
let ac = self.ac.clone();
ThreeValuedInterpretationsIterator::new(&grounded).filter(move |interpretation| {
interpretation.iter().enumerate().all(|(ac_idx, it)| {
log::trace!("idx [{}], term: {}", ac_idx, it);
it.compare_inf(&interpretation.iter().enumerate().fold(
ac[ac_idx],
|acc, (var, term)| {
if term.is_truth_value() {
self.bdd.restrict(acc, Var(var), term.is_true())
} else {
acc
}
},
))
})
})
}
/// Returns a [Vector][std::vec::Vec] of [ModelCounts][crate::datatypes::ModelCounts] for each acceptance condition.
///
/// `memoization` controls whether memoization is utilised or not.
pub fn formulacounts(&self, memoization: bool) -> Vec<ModelCounts> {
self.ac
.iter()
.map(|ac| self.bdd.models(*ac, memoization))
.collect()
}
/// Creates a [PrintableInterpretation] for output purposes.
pub fn print_interpretation<'a, 'b>(
&'a self,
interpretation: &'b [Term],
) -> PrintableInterpretation<'b>
where
'a: 'b,
{
PrintableInterpretation::new(interpretation, &self.ordering)
}
/// Creates a [PrintDictionary] for output purposes.
pub fn print_dictionary(&self) -> PrintDictionary {
PrintDictionary::new(&self.ordering)
}
/// Fixes the bdd after an import with serde.
pub fn fix_import(&mut self) {
self.bdd.fix_import();
}
/// Counts facets of respective [Terms][crate::datatypes::Term]
/// and returns [Vector][std::vec::Vec] containing respective
/// facet counts.
pub fn facet_count(&self, interpretation: &[Term]) -> Vec<(ModelCounts, FacetCounts)> {
interpretation
.iter()
.map(|t| {
let mcs = self.bdd.models(*t, false);
let n_vdps = { |t| self.bdd.var_dependencies(t).len() };
let fc = match mcs.models > 2 {
true => 2 * n_vdps(*t),
_ => 0,
};
let cfc = match mcs.cmodels > 2 {
true => 2 * n_vdps(*t),
_ => 0,
};
(mcs, (cfc, fc))
})
.collect::<Vec<_>>()
}
/// Computes the stable extensions of a given [`Adf`], using the [`NoGood`]-learner.
pub fn stable_nogood<'a, 'c>(
&'a mut self,
heuristic: Heuristic,
) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
{
let grounded = self.grounded();
let heu = heuristic.get_heuristic();
let (s, r) = crossbeam_channel::unbounded::<Vec<Term>>();
self.stable_nogood_get_vec(&grounded, heu, s, r).into_iter()
}
/// Computes the stable extension of a given [`Adf`], using the [`NoGood`]-learner.
/// Needs a [`Sender`][crossbeam_channel::Sender<Vec<crate::datatypes::Term>>] where the results of the computation can be put to.
pub fn stable_nogood_channel(
&mut self,
heuristic: Heuristic,
sender: crossbeam_channel::Sender<Vec<Term>>,
) {
let grounded = self.grounded();
self.nogood_internal(
&grounded,
heuristic.get_heuristic(),
Self::stability_check,
sender,
);
}
/// Computes the two valued extension of a given [`Adf`], using the [`NoGood`]-learner.
/// Needs a [`Sender`][crossbeam_channel::Sender<Vec<crate::datatypes::Term>>] where the results of the computation can be put to.
pub fn two_val_nogood_channel(
&mut self,
heuristic: Heuristic,
sender: crossbeam_channel::Sender<Vec<Term>>,
) {
let grounded = self.grounded();
self.nogood_internal(
&grounded,
heuristic.get_heuristic(),
|_self: &mut Self, _int: &[Term]| true,
sender,
)
}
fn stable_nogood_get_vec<H>(
&mut self,
interpretation: &[Term],
heuristic: H,
s: crossbeam_channel::Sender<Vec<Term>>,
r: crossbeam_channel::Receiver<Vec<Term>>,
) -> Vec<Vec<Term>>
where
H: Fn(&Self, &[Term]) -> Option<(Var, Term)>,
{
self.nogood_internal(interpretation, heuristic, Self::stability_check, s);
r.iter().collect()
}
fn nogood_internal<H, I>(
&mut self,
interpretation: &[Term],
heuristic: H,
stability_check: I,
s: crossbeam_channel::Sender<Vec<Term>>,
) where
H: Fn(&Self, &[Term]) -> Option<(Var, Term)>,
I: Fn(&mut Self, &[Term]) -> bool,
{
let mut cur_interpr = interpretation.to_vec();
let mut ng_store = NoGoodStore::new(
self.ac
.len()
.try_into()
.expect("Expecting only u32 many statements"),
);
let mut stack: Vec<(bool, NoGood)> = Vec::new();
let mut interpr_history: Vec<Vec<Term>> = Vec::new();
let mut backtrack = false;
let mut update_ng;
let mut update_fp = false;
let mut choice = false;
log::debug!("start learning loop");
loop {
log::trace!("interpr: {:?}", cur_interpr);
log::trace!("choice: {}", choice);
if choice {
choice = false;
if let Some((var, term)) = heuristic(&*self, &cur_interpr) {
log::trace!("choose {}->{}", var, term.is_true());
interpr_history.push(cur_interpr.to_vec());
cur_interpr[var.value()] = term;
stack.push((true, cur_interpr.as_slice().into()));
} else {
backtrack = true;
}
}
update_ng = true;
log::trace!("backtrack: {}", backtrack);
if backtrack {
backtrack = false;
if stack.is_empty() {
break;
}
while let Some((choice, ng)) = stack.pop() {
log::trace!("adding ng: {:?}", ng);
ng_store.add_ng(ng);
if choice {
cur_interpr = interpr_history.pop().expect("both stacks (interpr_history and `stack`) should always be synchronous");
log::trace!(
"choice found, reverting interpretation to {:?}",
cur_interpr
);
break;
}
}
}
match ng_store.conclusion_closure(&cur_interpr) {
crate::nogoods::ClosureResult::Update(new_int) => {
cur_interpr = new_int;
log::trace!("ng update: {:?}", cur_interpr);
stack.push((false, cur_interpr.as_slice().into()));
}
crate::nogoods::ClosureResult::NoUpdate => {
log::trace!("no update");
update_ng = false;
}
crate::nogoods::ClosureResult::Inconsistent => {
log::trace!("inconsistency");
backtrack = true;
continue;
}
}
let ac_consistent_interpr = self.apply_interpretation(&self.ac.clone(), &cur_interpr);
log::trace!(
"checking consistency of {:?} against {:?}",
ac_consistent_interpr,
cur_interpr
);
if cur_interpr
.iter()
.zip(ac_consistent_interpr.iter())
.any(|(cur, ac)| {
cur.is_truth_value() && ac.is_truth_value() && cur.is_true() != ac.is_true()
})
{
log::trace!("ac_inconsistency");
backtrack = true;
continue;
}
cur_interpr = self.update_interpretation_fixpoint_upd(&cur_interpr, &mut update_fp);
if update_fp {
log::trace!("fixpount updated");
//stack.push((false, cur_interpr.as_slice().into()));
} else if !update_ng {
// No updates done this loop
if !self.is_two_valued(&cur_interpr) {
choice = true;
} else if stability_check(self, &cur_interpr) {
// stable model found
stack.push((false, cur_interpr.as_slice().into()));
s.send(cur_interpr.clone())
.expect("Sender should accept results");
backtrack = true;
} else {
// not stable
log::trace!("2 val not stable");
stack.push((false, cur_interpr.as_slice().into()));
backtrack = true;
}
}
}
log::info!("{ng_store}");
log::debug!("{:?}", ng_store);
}
}
#[cfg(test)]
mod test {
use super::*;
use crossbeam_channel::unbounded;
use test_log::test;
#[test]
fn from_parser() {
let parser = AdfParser::default();
let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e)).";
parser.parse()(input).unwrap();
let adf = Adf::from_parser(&parser);
assert_eq!(adf.ordering.name(Var(0)), Some("a".to_string()));
assert_eq!(adf.ordering.names().read().unwrap()[0], "a");
assert_eq!(adf.ordering.name(Var(1)), Some("c".to_string()));
assert_eq!(adf.ordering.names().read().unwrap()[1], "c");
assert_eq!(adf.ordering.name(Var(2)), Some("b".to_string()));
assert_eq!(adf.ordering.names().read().unwrap()[2], "b");
assert_eq!(adf.ordering.name(Var(3)), Some("e".to_string()));
assert_eq!(adf.ordering.names().read().unwrap()[3], "e");
assert_eq!(adf.ordering.name(Var(4)), Some("d".to_string()));
assert_eq!(adf.ordering.names().read().unwrap()[4], "d");
assert_eq!(adf.ac, vec![Term(4), Term(2), Term(7), Term(15), Term(12)]);
let parser = AdfParser::default();
let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e)).";
parser.parse()(input).unwrap();
parser.varsort_alphanum();
let adf = Adf::from_parser(&parser);
assert_eq!(adf.ordering.names().read().unwrap()[0], "a");
assert_eq!(adf.ordering.names().read().unwrap()[1], "b");
assert_eq!(adf.ordering.names().read().unwrap()[2], "c");
assert_eq!(adf.ordering.names().read().unwrap()[3], "d");
assert_eq!(adf.ordering.names().read().unwrap()[4], "e");
assert_eq!(adf.ac, vec![Term(3), Term(7), Term(2), Term(11), Term(13)]);
}
#[test]
fn serialize() {
let parser = AdfParser::default();
let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e)).";
parser.parse()(input).unwrap();
let mut adf = Adf::from_parser(&parser);
let grounded = adf.grounded();
let serialized = serde_json::to_string(&adf).unwrap();
log::debug!("Serialized to {}", serialized);
let result = r#"{"ordering":{"names":["a","c","b","e","d"],"mapping":{"b":2,"a":0,"c":1,"e":3,"d":4}},"bdd":{"nodes":[{"var":18446744073709551614,"lo":0,"hi":0},{"var":18446744073709551615,"lo":1,"hi":1},{"var":0,"lo":0,"hi":1},{"var":1,"lo":0,"hi":1},{"var":2,"lo":0,"hi":1},{"var":3,"lo":0,"hi":1},{"var":4,"lo":0,"hi":1},{"var":0,"lo":1,"hi":0},{"var":0,"lo":1,"hi":4},{"var":1,"lo":1,"hi":0},{"var":2,"lo":1,"hi":0},{"var":1,"lo":10,"hi":4},{"var":0,"lo":3,"hi":11},{"var":3,"lo":1,"hi":0},{"var":4,"lo":1,"hi":0},{"var":3,"lo":6,"hi":14}],"cache":[[{"var":1,"lo":0,"hi":1},3],[{"var":3,"lo":6,"hi":14},15],[{"var":2,"lo":0,"hi":1},4],[{"var":0,"lo":1,"hi":0},7],[{"var":0,"lo":3,"hi":11},12],[{"var":3,"lo":1,"hi":0},13],[{"var":4,"lo":1,"hi":0},14],[{"var":0,"lo":0,"hi":1},2],[{"var":3,"lo":0,"hi":1},5],[{"var":0,"lo":1,"hi":4},8],[{"var":4,"lo":0,"hi":1},6],[{"var":1,"lo":1,"hi":0},9],[{"var":2,"lo":1,"hi":0},10],[{"var":1,"lo":10,"hi":4},11]],"count_cache":{}},"ac":[4,2,7,15,12]}"#;
let mut deserialized: Adf = serde_json::from_str(result).unwrap();
assert_eq!(adf.ac, deserialized.ac);
let grounded_import = deserialized.grounded();
assert_eq!(grounded, grounded_import);
assert_eq!(
format!("{}", adf.print_interpretation(&grounded)),
format!("{}", deserialized.print_interpretation(&grounded_import))
);
}
#[test]
fn grounded() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
let result = adf.grounded();
assert_eq!(
result,
vec![Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)]
);
assert_eq!(
format!("{}", adf.print_interpretation(&result)),
"T(a) u(b) u(c) u(d) F(e) T(f) \n"
);
let parser = AdfParser::default();
parser.parse()(
"s(a).s(b).s(c).s(d).s(e).ac(a,c(v)).ac(b,a).ac(c,b).ac(d,neg(c)).ac(e,and(a,d)).",
)
.unwrap();
let mut adf = Adf::from_parser(&parser);
let result = adf.grounded();
assert_eq!(result, vec![Term(1), Term(1), Term(1), Term(0), Term(0)]);
}
#[test]
fn stable() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
let mut stable = adf.stable();
assert_eq!(
stable.next(),
Some(vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
])
);
assert_eq!(stable.next(), None);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(b)).ac(b,neg(a)).").unwrap();
let mut adf = Adf::from_parser(&parser);
let mut stable = adf.stable();
assert_eq!(stable.next(), Some(vec![Term::BOT, Term::TOP]));
assert_eq!(stable.next(), Some(vec![Term::TOP, Term::BOT]));
assert_eq!(stable.next(), None);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,b).ac(b,a).").unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(
adf.stable().collect::<Vec<_>>(),
vec![vec![Term::BOT, Term::BOT]]
);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(a)).ac(b,a).").unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(adf.stable().next(), None);
}
#[test]
fn stable_w_counts() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
let mut stable = adf.stable_count_optimisation_heu_a();
assert_eq!(
stable.next(),
Some(vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
])
);
assert_eq!(stable.next(), None);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(b)).ac(b,neg(a)).").unwrap();
let mut adf = Adf::from_parser(&parser);
let mut stable = adf.stable_count_optimisation_heu_a();
assert_eq!(stable.next(), Some(vec![Term::BOT, Term::TOP]));
assert_eq!(stable.next(), Some(vec![Term::TOP, Term::BOT]));
assert_eq!(stable.next(), None);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,b).ac(b,a).").unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(
adf.stable_count_optimisation_heu_a().collect::<Vec<_>>(),
vec![vec![Term::BOT, Term::BOT]]
);
assert_eq!(
adf.stable_count_optimisation_heu_b().collect::<Vec<_>>(),
vec![vec![Term::BOT, Term::BOT]]
);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(a)).ac(b,a).").unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(adf.stable_count_optimisation_heu_a().next(), None);
assert_eq!(adf.stable_count_optimisation_heu_b().next(), None);
}
#[test]
fn stable_nogood() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
let grounded = adf.grounded();
let (s, r) = unbounded();
adf.nogood_internal(
&grounded,
crate::adf::heuristics::heu_simple,
crate::adf::Adf::stability_check,
s,
);
assert_eq!(
r.iter().collect::<Vec<_>>(),
vec![vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
]]
);
let mut stable_iter = adf.stable_nogood(Heuristic::Simple);
assert_eq!(
stable_iter.next(),
Some(vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
])
);
assert_eq!(stable_iter.next(), None);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(b)).ac(b,neg(a)).").unwrap();
let mut adf = Adf::from_parser(&parser);
let grounded = adf.grounded();
let (s, r) = unbounded();
adf.nogood_internal(
&grounded,
crate::adf::heuristics::heu_simple,
crate::adf::Adf::stability_check,
s.clone(),
);
let stable_result = r.try_iter().collect::<Vec<_>>();
assert_eq!(
stable_result,
vec![vec![Term(1), Term(0)], vec![Term(0), Term(1)]]
);
let stable = adf.stable_nogood(Heuristic::Simple);
assert_eq!(
stable.collect::<Vec<_>>(),
vec![vec![Term(1), Term(0)], vec![Term(0), Term(1)]]
);
let stable = adf.stable_nogood(Heuristic::Custom(&|_adf, interpr| {
for (idx, term) in interpr.iter().enumerate() {
if !term.is_truth_value() {
return Some((Var(idx), Term::BOT));
}
}
None
}));
assert_eq!(
stable.collect::<Vec<_>>(),
vec![vec![Term(0), Term(1)], vec![Term(1), Term(0)]]
);
adf.stable_nogood_channel(Heuristic::default(), s);
assert_eq!(
r.iter().collect::<Vec<_>>(),
vec![vec![Term(1), Term(0)], vec![Term(0), Term(1)]]
);
// multi-threaded usage
let (s, r) = unbounded();
let solving = std::thread::spawn(move || {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
adf.stable_nogood_channel(Heuristic::MinModMaxVarImpMinPaths, s.clone());
adf.stable_nogood_channel(Heuristic::MinModMinPathsMaxVarImp, s.clone());
adf.two_val_nogood_channel(Heuristic::Simple, s)
});
let mut result_vec = Vec::new();
while let Ok(result) = r.recv() {
result_vec.push(result);
}
assert_eq!(
result_vec,
vec![
vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
],
vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
],
vec![
Term::TOP,
Term::TOP,
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP
],
vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
],
]
);
solving.join().unwrap();
}
#[test]
fn rand_stable_heu() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(b)).ac(b,neg(a)).").unwrap();
let mut adf = Adf::from_parser(&parser);
let result = adf.stable_nogood(Heuristic::Rand).collect::<Vec<_>>();
assert!(result.contains(&vec![Term(0), Term(1)]));
assert!(result.contains(&vec![Term(1), Term(0)]));
assert_eq!(result.len(), 2);
let mut adf = Adf::from_parser(&parser);
adf.seed([
122, 186, 240, 42, 235, 102, 89, 81, 187, 203, 127, 188, 167, 198, 126, 156, 25, 205,
204, 132, 112, 93, 23, 193, 21, 108, 166, 231, 158, 250, 128, 135,
]);
let result = adf.stable_nogood(Heuristic::Rand).collect::<Vec<_>>();
assert_eq!(result, vec![vec![Term(1), Term(0)], vec![Term(0), Term(1)]]);
}
#[test]
fn complete() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(
adf.complete().next(),
Some(vec![Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)])
);
assert_eq!(
adf.complete().collect::<Vec<_>>(),
[
[Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)],
[Term(1), Term(1), Term(1), Term(0), Term(0), Term(1)],
[Term(1), Term(0), Term(0), Term(1), Term(0), Term(1)]
]
);
}
#[test]
fn complete2() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(
adf.complete().collect::<Vec<_>>(),
[
[Term(1), Term(3), Term(3), Term(7)],
[Term(1), Term(1), Term(1), Term(0)],
[Term(1), Term(0), Term(0), Term(1)]
]
);
let printer = adf.print_dictionary();
for model in adf.complete() {
println!("{}", printer.print_interpretation(&model));
}
}
#[cfg(feature = "adhoccountmodels")]
#[test]
fn formulacounts() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).")
.unwrap();
let adf = Adf::from_parser(&parser);
assert_eq!(adf.formulacounts(false), adf.formulacounts(true));
}
#[test]
fn adf_default() {
let _adf = Adf::default();
}
#[test]
fn facet_counts() {
let parser = AdfParser::default();
parser.parse()(
"s(a). s(b). s(c). s(d). ac(a,c(v)). ac(b,b). ac(c,and(a,b)). ac(d,neg(b)).",
)
.unwrap();
let mut adf = Adf::from_parser(&parser);
let mut v = adf.ac.clone();
let mut fcs = adf.facet_count(&v);
assert_eq!(
fcs.iter().map(|t| t.1).collect::<Vec<_>>(),
vec![(0, 0), (0, 0), (4, 0), (0, 0)]
);
v[0] = Term::TOP;
// make navigation step for each bdd in adf-bdd-represenation
v = v
.iter()
.map(|t| {
v.iter()
.enumerate()
.fold(*t, |acc, (var, term)| match term.is_truth_value() {
true => adf.bdd.restrict(acc, Var(var), term.is_true()),
_ => acc,
})
})
.collect::<Vec<_>>();
fcs = adf.facet_count(&v);
assert_eq!(
fcs.iter().map(|t| t.1).collect::<Vec<_>>(),
vec![(0, 0), (0, 0), (0, 0), (0, 0)]
);
}
}