1
0
mirror of https://github.com/ellmau/adf-obdd.git synced 2025-12-19 09:29:36 +01:00
adf-obdd/src/adf.rs
Stefan Ellmauthaler 864419d033
BUGFIX three valued interpretations and complete interpretations (#16)
A couple of bugs have been identified, where the complete interpretation either identified too many interpretations as being complete (bug in complete_iter) or too less interpretations (bug in ThreeValuedInterpretationsIterator)

They are fixed now
2022-01-13 13:16:49 +01:00

451 lines
16 KiB
Rust

//! This module describes the abstract dialectical framework
//!
//! It handles
//! - parsing of statements and acceptance functions
//! - computing interpretations
//! - computing fixpoints
//! - computing the least fixpoint by using a shortcut
use serde::{Deserialize, Serialize};
use crate::{
datatypes::{
adf::{
PrintableInterpretation, ThreeValuedInterpretationsIterator,
TwoValuedInterpretationsIterator, VarContainer,
},
Term, Var,
},
obdd::Bdd,
parser::{AdfParser, Formula},
};
#[derive(Serialize, Deserialize, Debug)]
/// Representation of an ADF, with an ordering and dictionary of statement <-> number relations, a binary decision diagram, and a list of acceptance functions in Term representation
pub struct Adf {
ordering: VarContainer,
bdd: Bdd,
ac: Vec<Term>,
}
impl Adf {
/// Instantiates a new ADF, based on the parser-data
pub fn from_parser(parser: &AdfParser) -> Self {
log::info!("[Start] instantiating BDD");
let mut result = Self {
ordering: VarContainer::from_parser(
parser.namelist_rc_refcell(),
parser.dict_rc_refcell(),
),
bdd: Bdd::new(),
ac: vec![Term(0); parser.namelist_rc_refcell().as_ref().borrow().len()],
};
(0..parser.namelist_rc_refcell().borrow().len())
.into_iter()
.for_each(|value| {
log::trace!("adding variable {}", Var(value));
result.bdd.variable(Var(value));
});
log::debug!("[Start] adding acs");
parser
.formula_order()
.iter()
.enumerate()
.for_each(|(insert_order, new_order)| {
log::trace!(
"Pos {}/{} formula {}, {:?}",
insert_order + 1,
parser.formula_count(),
new_order,
parser.ac_at(insert_order)
);
let result_term = result.term(&parser.ac_at(insert_order).unwrap());
result.ac[*new_order] = result_term;
});
log::info!("[Success] instantiated");
result
}
fn term(&mut self, formula: &Formula) -> Term {
match formula {
Formula::Bot => Bdd::constant(false),
Formula::Top => Bdd::constant(true),
Formula::Atom(val) => {
let t1 = self.ordering.variable(val).unwrap();
self.bdd.variable(t1)
}
Formula::Not(val) => {
let t1 = self.term(val);
self.bdd.not(t1)
}
Formula::And(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.and(t1, t2)
}
Formula::Or(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.or(t1, t2)
}
Formula::Iff(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.iff(t1, t2)
}
Formula::Xor(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.xor(t1, t2)
}
Formula::Imp(val1, val2) => {
let t1 = self.term(val1);
let t2 = self.term(val2);
self.bdd.imp(t1, t2)
}
}
}
/// Computes the grounded extension and returns it as a list
pub fn grounded(&mut self) -> Vec<Term> {
let ac = &self.ac.clone();
self.grounded_internal(ac)
}
fn grounded_internal(&mut self, interpretation: &[Term]) -> Vec<Term> {
log::info!("[Start] grounded");
let mut t_vals: usize = interpretation
.iter()
.filter(|elem| elem.is_truth_value())
.count();
let mut new_interpretation: Vec<Term> = interpretation.into();
loop {
let curr_interpretation = new_interpretation.clone();
let old_t_vals = t_vals;
for ac in new_interpretation
.iter_mut()
.filter(|term| !term.is_truth_value())
{
*ac = curr_interpretation
.iter()
.enumerate()
.fold(*ac, |acc, (var, term)| {
if term.is_truth_value() {
self.bdd.restrict(acc, Var(var), term.is_true())
} else {
acc
}
});
if ac.is_truth_value() {
t_vals += 1;
}
}
log::debug!(
"old-int: {:?}, {} constants",
curr_interpretation,
old_t_vals
);
log::debug!("new-int: {:?}, {} constants", new_interpretation, t_vals);
if t_vals == old_t_vals {
break;
}
}
log::info!("[Done] grounded");
new_interpretation
}
/// Computes the first `max_values` stable models
/// if max_values is 0, then all will be computed
pub fn stable(&mut self, max_values: usize) -> Vec<Vec<Term>> {
let grounded = self.grounded();
if max_values == 0 {
self.stable_iter(&grounded).collect()
} else {
self.stable_iter(&grounded)
.enumerate()
.take_while(|(idx, _elem)| *idx < max_values)
.map(|(_, elem)| elem)
.collect()
}
}
/// Computes the stable models
/// Returns an Iterator which contains all stable models
fn stable_iter<'a, 'b, 'c>(
&'a mut self,
grounded: &'b [Term],
) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
'b: 'c,
{
TwoValuedInterpretationsIterator::new(grounded)
.map(|interpretation| {
let mut interpr = self.ac.clone();
for ac in interpr.iter_mut() {
*ac = interpretation
.iter()
.enumerate()
.fold(*ac, |acc, (var, term)| {
if term.is_truth_value() && !term.is_true() {
self.bdd.restrict(acc, Var(var), false)
} else {
acc
}
});
}
let grounded_check = self.grounded_internal(&interpr);
log::debug!(
"grounded candidate\n{:?}\n{:?}",
interpretation,
grounded_check
);
(interpretation, grounded_check)
})
.filter(|(int, grd)| {
int.iter()
.zip(grd.iter())
.all(|(it, gr)| it.compare_inf(gr))
})
.map(|(int, _grd)| int)
}
/// Computes the first `max_values` stable models
/// if max_values is 0, then all will be computed
pub fn complete(&mut self, max_values: usize) -> Vec<Vec<Term>> {
let grounded = self.grounded();
if max_values == 0 {
self.complete_iter(&grounded).collect()
} else {
self.complete_iter(&grounded)
.enumerate()
.take_while(|(idx, _elem)| *idx < max_values)
.map(|(_, elem)| elem)
.collect()
}
}
/// Computes the complete models
/// Returns an Iterator which contains all complete models
fn complete_iter<'a, 'b, 'c>(
&'a mut self,
grounded: &'b [Term],
) -> impl Iterator<Item = Vec<Term>> + 'c
where
'a: 'c,
'b: 'c,
{
let ac = self.ac.clone();
ThreeValuedInterpretationsIterator::new(grounded).filter(move |interpretation| {
interpretation.iter().enumerate().all(|(ac_idx, it)| {
log::trace!("idx [{}], term: {}", ac_idx, it);
it.compare_inf(&interpretation.iter().enumerate().fold(
ac[ac_idx],
|acc, (var, term)| {
if term.is_truth_value() {
self.bdd.restrict(acc, Var(var), term.is_true())
} else {
acc
}
},
))
})
})
}
/// creates a [PrintableInterpretation] for output purposes
pub fn print_interpretation<'a, 'b>(
&'a self,
interpretation: &'b [Term],
) -> PrintableInterpretation<'b>
where
'a: 'b,
{
PrintableInterpretation::new(interpretation, &self.ordering)
}
}
#[cfg(test)]
mod test {
use super::*;
use test_log::test;
#[test]
fn from_parser() {
let parser = AdfParser::default();
let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e)).";
parser.parse()(input).unwrap();
let adf = Adf::from_parser(&parser);
assert_eq!(adf.ordering.names().as_ref().borrow()[0], "a");
assert_eq!(adf.ordering.names().as_ref().borrow()[1], "c");
assert_eq!(adf.ordering.names().as_ref().borrow()[2], "b");
assert_eq!(adf.ordering.names().as_ref().borrow()[3], "e");
assert_eq!(adf.ordering.names().as_ref().borrow()[4], "d");
assert_eq!(adf.ac, vec![Term(4), Term(2), Term(7), Term(15), Term(12)]);
let parser = AdfParser::default();
let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e)).";
parser.parse()(input).unwrap();
parser.varsort_alphanum();
let adf = Adf::from_parser(&parser);
assert_eq!(adf.ordering.names().as_ref().borrow()[0], "a");
assert_eq!(adf.ordering.names().as_ref().borrow()[1], "b");
assert_eq!(adf.ordering.names().as_ref().borrow()[2], "c");
assert_eq!(adf.ordering.names().as_ref().borrow()[3], "d");
assert_eq!(adf.ordering.names().as_ref().borrow()[4], "e");
assert_eq!(adf.ac, vec![Term(3), Term(7), Term(2), Term(11), Term(13)]);
}
#[test]
fn serialize() {
let parser = AdfParser::default();
let input = "s(a).s(c).ac(a,b).ac(b,neg(a)).s(b).ac(c,and(c(v),or(c(f),a))).s(e).s(d).ac(d,iff(imp(a,b),c)).ac(e,xor(d,e)).";
parser.parse()(input).unwrap();
let mut adf = Adf::from_parser(&parser);
let grounded = adf.grounded();
let serialized = serde_json::to_string(&adf).unwrap();
log::debug!("Serialized to {}", serialized);
let result = r#"{"ordering":{"names":["a","c","b","e","d"],"mapping":{"b":2,"a":0,"e":3,"c":1,"d":4}},"bdd":{"nodes":[{"var":18446744073709551614,"lo":0,"hi":0},{"var":18446744073709551615,"lo":1,"hi":1},{"var":0,"lo":0,"hi":1},{"var":1,"lo":0,"hi":1},{"var":2,"lo":0,"hi":1},{"var":3,"lo":0,"hi":1},{"var":4,"lo":0,"hi":1},{"var":0,"lo":1,"hi":0},{"var":0,"lo":1,"hi":4},{"var":1,"lo":1,"hi":0},{"var":2,"lo":1,"hi":0},{"var":1,"lo":10,"hi":4},{"var":0,"lo":3,"hi":11},{"var":3,"lo":1,"hi":0},{"var":4,"lo":1,"hi":0},{"var":3,"lo":6,"hi":14}],"cache":[[{"var":3,"lo":1,"hi":0},13],[{"var":3,"lo":6,"hi":14},15],[{"var":4,"lo":0,"hi":1},6],[{"var":0,"lo":0,"hi":1},2],[{"var":4,"lo":1,"hi":0},14],[{"var":2,"lo":0,"hi":1},4],[{"var":1,"lo":0,"hi":1},3],[{"var":0,"lo":1,"hi":4},8],[{"var":3,"lo":0,"hi":1},5],[{"var":0,"lo":1,"hi":0},7],[{"var":2,"lo":1,"hi":0},10],[{"var":0,"lo":3,"hi":11},12],[{"var":1,"lo":1,"hi":0},9],[{"var":1,"lo":10,"hi":4},11]]},"ac":[4,2,7,15,12]}"#;
let mut deserialized: Adf = serde_json::from_str(&result).unwrap();
assert_eq!(adf.ac, deserialized.ac);
let grounded_import = deserialized.grounded();
assert_eq!(grounded, grounded_import);
assert_eq!(
format!("{}", adf.print_interpretation(&grounded)),
format!("{}", deserialized.print_interpretation(&grounded_import))
);
}
#[test]
fn grounded() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
let result = adf.grounded();
assert_eq!(
result,
vec![Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)]
);
assert_eq!(
format!("{}", adf.print_interpretation(&result)),
"T(a) u(b) u(c) u(d) F(e) T(f) \n"
);
let parser = AdfParser::default();
parser.parse()(
"s(a).s(b).s(c).s(d).s(e).ac(a,c(v)).ac(b,a).ac(c,b).ac(d,neg(c)).ac(e,and(a,d)).",
)
.unwrap();
let mut adf = Adf::from_parser(&parser);
let result = adf.grounded();
assert_eq!(result, vec![Term(1), Term(1), Term(1), Term(0), Term(0)]);
}
#[test]
fn stable() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(
adf.stable(0),
vec![vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
]]
);
assert_eq!(
adf.stable(10),
vec![vec![
Term::TOP,
Term::BOT,
Term::BOT,
Term::TOP,
Term::BOT,
Term::TOP
]]
);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(b)).ac(b,neg(a)).").unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(adf.stable(1), vec![vec![Term::BOT, Term::TOP]]);
assert_eq!(adf.stable(2), adf.stable(0));
assert_eq!(
adf.stable(0),
vec![vec![Term::BOT, Term::TOP], vec![Term::TOP, Term::BOT]]
);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,b).ac(b,a).").unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(adf.stable(0), vec![vec![Term::BOT, Term::BOT]]);
let parser = AdfParser::default();
parser.parse()("s(a).s(b).ac(a,neg(a)).ac(b,a).").unwrap();
let mut adf = Adf::from_parser(&parser);
let empty: Vec<Vec<Term>> = Vec::new();
assert_eq!(adf.stable(0), empty);
assert_eq!(adf.stable(99999), empty);
}
#[test]
fn complete() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).\ns(e).ac(e,and(b,or(neg(b),c(f)))).s(f).\n\nac(f,xor(a,e)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(
adf.complete(1),
vec![vec![Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)]]
);
assert_eq!(
adf.complete(0),
[
[Term(1), Term(3), Term(3), Term(9), Term(0), Term(1)],
[Term(1), Term(1), Term(1), Term(0), Term(0), Term(1)],
[Term(1), Term(0), Term(0), Term(1), Term(0), Term(1)]
]
);
}
#[test]
fn complete2() {
let parser = AdfParser::default();
parser.parse()("s(a).s(b).s(c).s(d).ac(a,c(v)).ac(b,b).ac(c,and(a,b)).ac(d,neg(b)).")
.unwrap();
let mut adf = Adf::from_parser(&parser);
assert_eq!(
adf.complete(0),
[
[Term(1), Term(3), Term(3), Term(7)],
[Term(1), Term(1), Term(1), Term(0)],
[Term(1), Term(0), Term(0), Term(1)]
]
);
for model in adf.complete(0) {
println!("{}", adf.print_interpretation(&model));
}
}
}